skip to main content
research-article

Representations of Monotone Boolean Functions by Linear Programs

Published:20 July 2019Publication History
Skip Abstract Section

Abstract

We introduce the notion of monotone linear programming circuits (MLP circuits), a model of computation for partial Boolean functions. Using this model, we prove the following results.1

(1) MLP circuits are superpolynomially stronger than monotone Boolean circuits.

(2) MLP circuits are exponentially stronger than monotone span programs over the reals.

(3) MLP circuits can be used to provide monotone feasibility interpolation theorems for Lovász-Schrijver proof systems and for mixed Lovász-Schrijver proof systems.

(4) The Lovász-Schrijver proof system cannot be polynomially simulated by the cutting planes proof system.

Finally, we establish connections between the problem of proving lower bounds for the size of MLP circuits and the field of extension complexity of polytopes.

References

  1. Michael Alekhnovich and Alexander A. Razborov. 2002. Satisfiability, branch-width and Tseitin tautologies. In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS’02). 593--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. László Babai, Anna Gál, and Avi Wigderson. 1999. Superpolynomial lower bounds for monotone span programs. Combinatorica 19, 3 (1999), 301--319.Google ScholarGoogle ScholarCross RefCross Ref
  3. Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. 1996. Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. Lond. Math. Soc. 3, 1 (1996), 1--26.Google ScholarGoogle ScholarCross RefCross Ref
  4. Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. 1997. Lower bounds for cutting planes proofs with small coefficients. J. Symbol. Logic 62, 3 (1997), 708--728.Google ScholarGoogle ScholarCross RefCross Ref
  5. Gábor Braun, Samuel Fiorini, Sebastian Pokutta, and David Steurer. 2015. Approximation limits of linear programs (beyond hierarchies). Math. Operat. Res. 40, 3 (2015), 756--772. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Mark Braverman and Ankur Moitra. 2013. An information complexity approach to extended formulations. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing. ACM, 161--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Samuel R. Buss and Toniann Pitassi. 1998. Good degree bounds on Nullstellensatz refutations of the induction principle. J. Comput. Syst. Sci. 57, 2 (1998), 162--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Mateus de Oliveira Oliveira and Pavel Pudlák. 2017. Representations of monotone Boolean functions by linear programs. In Proceedings of the 32nd Computational Complexity Conference (CCC’17), LIPIcs, Vol. 79. 3:1--3:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald De Wolf. 2015. Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62, 2 (2015), 17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xudong Fu. 1998. Lower bounds on sizes of cutting planes proofs for modular coloring principles. In Proof Complexity and Feasible Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Paul W. Beame and Samuel R. Buss (Eds.), Vol. 39. 135–148.Google ScholarGoogle Scholar
  11. Anna Gál. 2001. A characterization of span program size and improved lower bounds for monotone span programs. Comput. Complex. 10, 4 (2001), 277--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Anna Gál and Pavel Pudlák. 2003. A note on monotone complexity and the rank of matrices. Inform. Process. Lett. 87, 6 (2003), 321--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michel X. Goemans. 2015. Smallest compact formulation for the permutahedron. Math. Program. 153, 1 (2015), 5--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dima Grigoriev. 2001. Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259, 1 (2001), 613--622.Google ScholarGoogle ScholarCross RefCross Ref
  15. Dima Grigoriev, Edward A Hirsch, and Dmitrii V Pasechnik. 2002. Complexity of semi-algebraic proofs. In Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science. Springer, 419--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Armin Haken. 1985. The intractability of resolution. Theor. Comput. Sci. 39 (1985), 297--308.Google ScholarGoogle ScholarCross RefCross Ref
  17. Armin Haken and Stephen A Cook. 1999. An exponential lower bound for the size of monotone real circuits. J. Comput. System Sci. 58, 2 (1999), 326--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. 1999. Lower bounds for the polynomial calculus and the Gröbner basis algorithm. Comput. Complex. 8, 2 (1999), 127--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Karchmer and A. Wigderson. 1993. On span programs. In Proceedings of the 8th Annual Structure in Complexity Theory Conference. IEEE Comput. Soc. Press, Los Alamitos, CA, 102--111.Google ScholarGoogle Scholar
  20. Arist Kojevnikov and Dmitry Itsykson. 2006. Lower bounds of static Lovász-Schrijver calculus proofs for tseitin tautologies. In Proceedings of the International Colloquium on Automata, Languages, and Programming. Springer, 323--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jan Krajíček. 1997. Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbol. Logic 62, 02 (1997), 457--486.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jan Krajíček. 2002. Interpolation and approximate semantic derivations. Math. Logic Quart. 48, 4 (2002), 602--606.Google ScholarGoogle ScholarCross RefCross Ref
  23. László Lovász and Alexander Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimiz. 1, 2 (1991), 166--190.Google ScholarGoogle ScholarCross RefCross Ref
  24. Toniann Pitassi and Nathan Segerlind. 2012. Exponential lower bounds and integrality gaps for tree-like Lovasz-Schrijver procedures. SIAM J. Comput. 41, 1 (2012), 128--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pavel Pudlák. 1997. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbol. Logic 62, 03 (1997), 981--998.Google ScholarGoogle ScholarCross RefCross Ref
  26. Pavel Pudlák. 1999. On the complexity of the propositional calculus. Sets and Proofs, London Mathematical Society Lecture Notes Series, S. Barry Cooper and John K. Truss (Eds.), Vol. 258. 197–218.Google ScholarGoogle Scholar
  27. Pavel Pudlák and Jiri Sgall. 1998. Algebraic models of computation and interpolation for algebraic proof systems. In Proceedings of Feasible Arithmetic and Proof Complexity, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 39. 279--295.Google ScholarGoogle ScholarCross RefCross Ref
  28. Ran Raz and Avi Wigderson. 1992. Monotone circuits for matching require linear depth. J. ACM 39, 3 (1992), 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alexander A. Razborov. 1985. Lower bounds on monotone complexity of the logical permanent. Math. Not. 37, 6 (1985), 485--493.Google ScholarGoogle ScholarCross RefCross Ref
  30. Alexander A. Razborov. 1990. Lower bounds for monotone complexity of boolean functions. Am. Math. Soc. Transl. 147 (1990), 75--84.Google ScholarGoogle ScholarCross RefCross Ref
  31. Alexander A. Razborov. 1995. Unprovability of circuit size lower bounds in certain fragments of bounded arithmetic. Izvest. RAN 59, 1 (1995), 201--224.Google ScholarGoogle Scholar
  32. Alexander A. Razborov. 2016. Proof complexity and beyond. ACM SIGACT News 47, 2 (2016), 66--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A Cook. 2016. Exponential lower bounds for monotone span programs. In Proceedings of the IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS’16). IEEE, 406--415.Google ScholarGoogle ScholarCross RefCross Ref
  34. Thomas Rothvoß. 2014. The matching polytope has exponential extension complexity. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC’14). ACM, 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Alexander Schrijver. 2003. Combinatorial Optimization: Polyhedra and Efficiency. Vol. 24. Springer.Google ScholarGoogle Scholar

Index Terms

  1. Representations of Monotone Boolean Functions by Linear Programs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computation Theory
        ACM Transactions on Computation Theory  Volume 11, Issue 4
        December 2019
        252 pages
        ISSN:1942-3454
        EISSN:1942-3462
        DOI:10.1145/3331049
        Issue’s Table of Contents

        Copyright © 2019 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2019
        • Accepted: 1 April 2019
        • Revised: 1 January 2019
        • Received: 1 November 2017
        Published in toct Volume 11, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format