Skip to main content

Advertisement

Log in

In vitro and ex vivo vegetative propagation and cytokinin profiles of Sceletium tortuosum (L.) N. E. Br.: a South African medicinal plant

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Sceletium tortuosum is a South African protected species with tremendous value in traditional and modern medicine. The plants’ mesembrine-type alkaloids are potential therapeutics for a plethora of psychological, neurological and inflammatory disorders. In our in vitro and ex vivo studies, vegetative propagation and growth of this species were investigated. Cytokinin (CK) profiles were also explored. Shoot multiplication was induced on Murashige and Skoog (MS) medium supplemented with 2.5 µM indole-3-butyric acid (IBA). In vitro-generated shoots were inoculated on MS medium supplemented with 0, 2.5, 5.0 and 10.0 µM IBA or indole-3-acetic acid (IAA). Optimal rooting (55%), mean number of roots (3.80 ± 0.83) and new leaf pairs (4.65 ± 0.67) were achieved by 10.0 µM IBA. After greenhouse acclimatization, 45–90% of plantlets survived. All ex vivo shoot cuttings rooted well (90–100%). The highest mean number of roots (11.20 ± 1.37) and root length (57.18 ± 3.85 mm) were obtained by 5.0 µM IBA. Although spontaneous rooting was observed in both experiments, auxins enhanced multiple growth parameters. Cytokinin analyses of tissue-cultured (auxin-treated) and greenhouse (untreated) plants revealed higher cytokinin levels in vitro. These investigations provide rapid and efficient propagation techniques for Sceletium tortuosum which will be valuable to conservationists and pharmaceutical companies.

Key message

Plant tissue culture and cuttings enabled rapid propagation of Sceletium tortuosum. Exogenous plant growth regulators were not essential for shoot multiplication, flowering and rooting. Auxins effectively improved growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available from the corresponding author on request.

Code availability

Software applications used to analyse data and generate figures are disclosed.

Abbreviations

BAP :

N6-Benzylaminopurine

BAP7G :

N6-Benzylaminopurine-7-glucoside

BAP9G :

N6-Benzylaminopurine-9-glucoside

BAPR :

N6-Benzylaminopurine riboside

BAPR5´MP :

N6-benzylaminopurine-5´-monophosphate

CK:

Cytokinin

cZ :

cis-zeatin

cZ7G :

cis-zeatin-7-glucoside

cZ9G :

cis-zeatin-9-glucoside

cZOG :

cis-zeatin-O-glucoside

cZR :

cis-zeatin riboside

cZR5´MP :

cis-zeatin riboside-5´-monophosphate

cZROG :

cis-zeatin-O-glucoside riboside

DHZ:

Dihydrozeatin

DHZ7G:

Dihydrozeatin-7-glucoside

DHZ9G:

Dihydrozeatin-9-glucoside

DHZOG:

Dihydrozeatin-O-glucoside

DHZR:

Dihydrozeatin riboside

DHZR5´MP:

Dihydrozeatin riboside-5´-monophosphate

DHZROG:

Dihydrozeatin-O-glucoside riboside

GMP:

Greenhouse mother plant

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

iP:

N6-isopentenyladenine

iP7G:

N6-isopentenyladenine-7-glucoside

iP9G:

N6-isopentenyladenine-9-glucoside

iPR:

N6-isopentenyladenosine

iPR5´MP:

N6-isopentenyladenosine-5´-monophosphate

K:

Kinetin

K9G:

Kinetin-9-glucoside

KR:

Kinetin riboside

MNLP:

Mean number of new leaf pairs

MNR:

Mean number of roots

MRL:

Mean root length

MS medium:

Murashige and Skoog (1962) medium

mT:

meta-topolin

mT7G:

meta-topolin-7-glucoside

mT9G:

meta-topolin-9-glucoside

mTR :

meta-Topolin riboside

oT:

ortho-topolin

oT7G:

ortho-topolin-7-glucoside

oT9G:

ortho-topolin-9-glucoside

oTR:

ortho-topolin riboside

PAR:

Photosynthetic active radiation

PGR:

Plant growth regulator

pT:

para-topolin

pT7G :

para-topolin-7-glucoside

pT9G :

para-topolin-9-glucoside

pTR :

para-topolin riboside

tZ:

trans-zeatin

tZ7G:

trans-zeatin-7-glucoside

tZ9G:

trans-zeatin-9-glucoside

tZOG:

trans-zeatin-O-glucoside

tZR:

trans-zeatin riboside

tZR5´MP:

trans-zeatin riboside-5´-monophosphate

tZROG:

trans-zeatin-O-glucoside riboside

References

  • Agarwal M, Kamal R (2004) In vitro clonal propagation of Momordica charantia L. Indian J Biotechnol 3:426–430

    CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006a) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006b) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amoo SO, Aremu AO, Van Staden J (2012) In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. Plant Cell, Tissue and Organ Culture 111:345–358

    CAS  Google Scholar 

  • Ashraf MF, Aziz MA, Kemat N, Ismail I (2014) Effect of cytokinin types, concentrations and their interactions on in vitro shoot regeneration of Chlorophytum borivilianum Sant. & Fernandez. Electron J Biotechnol 17:275–279

    Google Scholar 

  • Babaei N, Abdullah P, Ashikin N, Saleh G, Lee Abdullah T (2014) An efficient in vitro plantlet regeneration from shoot tip cultures of Curculigo latifolia, a medicinal plant. The Scientific World Journal 2014. https://doi.org/10.1155/2014/275028

  • Bairu MW, Novák O, Doležal K, Van Staden J (2011) Changes in endogenous cytokinin profiles in micropropagated Harpagophytum procumbens in relation to shoot-tip necrosis and cytokinin treatments. Plant Growth Regul 63:105–114

    CAS  Google Scholar 

  • Baydar H, Ülger S (1998) Correlations between changes in the amount of endogenous phytohormones and flowering in the Safflower (Carthamus tinctorius L.). Turkish J Biol 22:421–426

    CAS  Google Scholar 

  • Bennett AC, Van Camp A, Lopez V, Smith C (2018) Sceletium tortuosum may delay chronic disease progression via alkaloid-dependent antioxidant or anti-inflammatory action. J Physiol Biochem 74:539–547

    CAS  PubMed  Google Scholar 

  • Bernier G, Lejeune P, Jacqmard A, Kinet J-M (1990) Cytokinins in flower initiation. In: Pharis RR, Rood SB (eds) Plant Growth Substances 1988. Springer, Heidelberg, pp 486–491

    Google Scholar 

  • Braun P, Winkelmann T (2015) Cytological investigations in midday flowers (Aizoaceae) reveal high DNA contents in different somatic tissues and potential occurrence of unreduced male gametes. In: XXV International EUCARPIA Symposium Section Ornamentals: Crossing Borders 1087, pp 437–444

  • Chandler J (2011) The hormonal regulation of flower development. J Plant Growth Regul 30:242–254

    CAS  Google Scholar 

  • Chen C-M, Ertl JR, Leisner SM, Chang C-C (1985) Localization of cytokinin biosynthetic sites in pea plants and carrot roots. Plant Physiol 78:510–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland RE (1987) Auxin and cell elongation. In: Plant hormones and their role in plant growth and development. Springer, Dordrecht, pp 132–148

    Google Scholar 

  • Coetzee DD, López V, Smith C (2016) High-mesembrine Sceletium extract (Trimesemine) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor. J Ethnopharmacol 177:111–116

    CAS  PubMed  Google Scholar 

  • Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H, Périlleux C, Bernier G (2003) Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot 54:2511–2517

    CAS  PubMed  Google Scholar 

  • D’Aloia M et al (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979

    PubMed  Google Scholar 

  • Dahab AMA, Habib AMA, Hosni YA, Gabr AMM (2005) Effect of MS-salt strength, sucrose and IBA concentration and acclimatization media on Ruscus hypoglossum L. micropropagation. Arab J Biotechnol 8:141–154

    Google Scholar 

  • Digby A (2005) Self-Medication and the trade in medicine within a multi-ethnic context: a case study of South Africa from the mid-nineteenth to mid-twentieth centuries. Soc Hist Med 18:439–457

    Google Scholar 

  • Dimpfel W, Franklin R, Gericke N, Schombert L (2018) Effect of Zembrin® and four of its alkaloid constituents on electric excitability of the rat hippocampus. J Ethnopharmacol 223:135–141

    CAS  PubMed  Google Scholar 

  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    PubMed  Google Scholar 

  • Elev8 (2017) Zembrin® Sceletium Extract. Retrieved from http://elev8me.co.za/zembrin/. Accessed on 31 August 2019

  • Fattorini L, Veloccia A, Della Rovere F, D’Angeli S, Falasca G, Altamura MM (2017) Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol 17:121. https://doi.org/10.1186/s12870-017-1071-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox JE et al (1973) The formation, isolation, and biological activity of a cytokinin 7-glucoside. Plant Physiol 52:627–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell and Dev Biol-Plant 32:272–289

    CAS  Google Scholar 

  • George EF, Hall MA, De Klerk G-J (2008) Plant Propagation by Tissue Culture, vol 1, 3rd Edn. Springer, Dordrecht

  • Gericke N, Viljoen AM (2008) Sceletium—a review update. J Ethnopharmacol 119:653–663

    CAS  PubMed  Google Scholar 

  • Gericke NP, Van Wyk B-E (2001) Pharmaceutical compositions containing mesembrine and related compounds. U.S, Washington, DC. Patent 6,288,104

    Google Scholar 

  • Gupta S, Plačková L, Kulkarni MG, Doležal K, Van Staden J (2019) Role of smoke stimulatory and inhibitory biomolecules in phytochrome-regulated seed germination of Lactuca sativa. Plant Physiol 181:458–470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gürel S, Gulşen Y (1998) The effects of IBA and BAP on in vitro shoot production of almond (Amygdalus communis L.). Turkish J Bot 22:375–380

    Google Scholar 

  • Haissig BE (1974) Influences of auxins and auxin synergists on adventitious root primordium initiation and development. NZ J Forest Sci 4:311–323

    CAS  Google Scholar 

  • Harvey AL, Young LC, Viljoen AM, Gericke NP (2011) Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. J Ethnopharmacol 137:1124–1129

    CAS  PubMed  Google Scholar 

  • Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M (2019) An efficient in vitro shoot regeneration through direct organogenesis from seedling-derived petiole and leaf segments and acclimatization of Ficus religiosa. J For Res 30:807–815

    CAS  Google Scholar 

  • Hošek P et al (2020) Distinct metabolism of N-glucosides of isopentenyladenine and trans‐zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol 225:2423–2438

    PubMed  Google Scholar 

  • Hothorn M, Dabi T, Chory J (2011) Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7:766–768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    CAS  PubMed  Google Scholar 

  • Hoyerová K et al (2006) Efficiency of different methods of extraction and purification of cytokinins. Phytochemistry 67:1151–1159

    PubMed  Google Scholar 

  • Hoyerová K, Hošek P (2020) New insights into the metabolism and role of cytokinin N-glucosides in plants. Front Plant Sci 11:741. doi:https://doi.org/10.3389/fpls.2020.00741

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi LMR (eds) Recent Advances in Plant in vitro Culture. InTech, Rijeka

    Google Scholar 

  • Islam MA, Zubair H, Imtiaz N, Chaudhary MF (2005) Effect of different plant growth regulators for the economical production of in vitro root cultures of Cicer arietinum L. Int J Agric Biol 7:621–626

    CAS  Google Scholar 

  • Jahan MT, Islam MR, Khan R, Mamun ANK, Ahmed G, Hakim L (2009) In vitro clonal propagation of anthurium (Anthurium andraeanum L.) using callus culture. Plant Tissue Cult Biotechnol 19:61–69

    Google Scholar 

  • Jeong BR, Sivanesan I (2015) Direct adventitious shoot regeneration, in vitro flowering, fruiting, secondary metabolite content and antioxidant activity of Scrophularia takesimensis Nakai. Plant Cell, Tissue and Organ Cult 123:607–618

    CAS  Google Scholar 

  • Jones B et al (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones B, Ljung K (2011) Auxin and cytokinin regulate each other’s levels via a metabolic feedback loop. Plant Signaling Behavior 6:901–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamínek M, Vaněk T, Motyka V (1987) Cytokinin activities of N6-benzyladenosine derivatives hydroxylated on the side-chain phenyl ring. J Plant Growth Regul 6:113–120

    Google Scholar 

  • Kapewangolo P, Tawha T, Nawinda T, Knott M, Hans R (2016) Sceletium tortuosum demonstrates in vitro anti-HIV and free radical scavenging activity. S. Afr J Bot 106:140–143

    Google Scholar 

  • Kesari V, Krishnamachari A, Rangan L (2009) Effect of auxins on adventitious rooting from stem cuttings of candidate plus tree Pongamia pinnata (L.), a potential biodiesel plant. Trees 23:597–604

    CAS  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book 12:e0168. doi:https://doi.org/10.1199/tab.0168

    Article  PubMed  PubMed Central  Google Scholar 

  • Koda Y, Okazawa Y (1980) Cytokinin production by Asparagus shoot apex cultured in vitro. Physiol Plant 49:193–197

    Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krstenansky JL (2017) Mesembrine alkaloids: Review of their occurrence, chemistry, and pharmacology. J Ethnopharmacol 195:10–19

    CAS  PubMed  Google Scholar 

  • Kudikala H, Jogam P, Sirikonda A, Mood K, Allini VR (2020) In vitro micropropagation and genetic fidelity studies using SCoT and ISSR primers in Annona reticulata L.: an important medicinal plant. Vegetos 33:446–457

    Google Scholar 

  • Laidler PW (1928) The magic medicine of the Hottentots. S Afr J Sci 25:433–447

    Google Scholar 

  • Leakey RRB, Newton AC, Dick JM (1994) Capture of genetic variation by vegetative propagation: processes determining success. In: Leakey RRB, Newton AC (eds) Tropical Trees: The Potential for Domestication and the Rebuilding Forest Resources. HMSO, London

    Google Scholar 

  • LeBude AV, Blazich FA (2018) Propagation. In: Moore KA, Bradley LK (eds) North Carolina Extension Gardener Handbook. NC State Extension, Raleigh

    Google Scholar 

  • Lee JH, Pijut PM (2017) Adventitious shoot regeneration from in vitro leaf explants of Fraxinus nigra. Plant Cell Tissue Organ Cult 130:335–343

    CAS  Google Scholar 

  • Li S-W, Xue L, Xu S, Feng H, An L (2009) Mediators, genes and signaling in adventitious rooting. Bot Rev 75:230–247

    Google Scholar 

  • Ljung K, Hull AK, Celenza J, Yamada M, Estelle M, Normanly J, Sandberg G (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    PubMed  Google Scholar 

  • Maheshwari P, Kumar A (2006) Organogenesis, shoot regeneration, and flowering response of Vernonia cinerea to different auxin/cytokinin combinations. In Vitro Cell Dev Biol-Plantt 42:589–595

    CAS  Google Scholar 

  • Mlungwana A (2018) In-vitro propagation studies of the endangered succulents Drosanthemum micans and Drosanthemum hallii (Aizoaceae). Doctoral dissertation, Cape Peninsula University of Technology

  • Mok DWS (2019) Cytokinins: Chemistry, Activity, and Function. CRC press, Boca Raton

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murbach TS, Hirka G, Szakonyiné IP, Gericke N, Endres JR (2014) A toxicological safety assessment of a standardized extract of Sceletium tortuosum (Zembrin®) in rats. Food Chem Toxicol 74:190–199

    CAS  PubMed  Google Scholar 

  • Napoletano M, Fraire C, Santangelo F, Moriggi E (2001) Mesembrine is an inhibitor of PDE4 that follows structure-activity relationship of rolipram. Chem Prepr Archive 2001:303–308

    Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proce Nat Academy Sci 101:8039–8044

    Google Scholar 

  • Normanly J, Slovin JP, Cohen JD (2010) Auxin biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones. Springer, Dordrecht, pp 36–62

    Google Scholar 

  • Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224

    PubMed  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537. doi:https://doi.org/10.1101/cshperspect.a001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446. doi:https://doi.org/10.1101/cshperspect.a001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plačková L et al (2017) Microscale magnetic microparticle-based immunopurification of cytokinins from Arabidopsis root apex. Plant J 89:1065–1075

    PubMed  Google Scholar 

  • Podlešáková K et al (2012) Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PloS One 7:e39293. doi:https://doi.org/10.1371/journal.pone.0039293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood B (1994) Uit die Veld-Apteek. Tafelberg, Cape Town

    Google Scholar 

  • Sassi M et al (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol 24:2335–2342

    CAS  PubMed  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevik H, Guney K (2013) Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings. Sci World J 2013:909507. doi:https://doi.org/10.1155/2013/909507

    Article  CAS  Google Scholar 

  • Shahzad A, Parveen S, Fatema M (2011) Development of a regeneration system via nodal segment culture in Veronica anagallis-aquatica L.–an amphibious medicinal plant. J Plant Interact 6:61–68

    CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    CAS  PubMed  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin–cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435

    CAS  PubMed  Google Scholar 

  • Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In: Symposia of the Society for Experimental Biology 11, pp 118–130

  • Šmehilová M, Dobrůšková J, Novák O, Takáč T, Galuszka P (2016) Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front Plant Sci 7:1264. doi:https://doi.org/10.3389/fpls.2016.01264

    Article  PubMed  PubMed Central  Google Scholar 

  • Štefančič M, Štampar F, Osterc G (2005) Influence of IAA and IBA on root development and quality of Prunus’ GiSelA 5’leafy cuttings. HortScience 40:2052–2055

    Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688

    CAS  Google Scholar 

  • Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin–cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svačinová J, Novák O, Plačková L, Lenobel R, Holík J, Strnad M, Doležal K (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8:17. https://doi.org/10.1186/1746-4811-8-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terburg D et al (2013) Acute effects of Sceletium tortuosum (Zembrin), a dual 5-HT reuptake and PDE4 inhibitor, in the human amygdala and its connection to the hypothalamus. Neuropsychopharmacology 38:2708–2716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thunberg CP (1795) Travels in Europe, Africa, and Asia, made between the years 1770 and 1779; in four volumes: containing travels in the empire of Japan. In: and in the islands of Java and Ceylon, together with the voyage home, vol 4. F. and C. Rivington, London

    Google Scholar 

  • Weigel U, Horn W, Hock B (1984) Endogenous auxin levels in terminal stem cuttings of Chrysanthemum morifolium during adventitious rooting. Physiol Plant 61:422–428

    CAS  Google Scholar 

  • Werbrouck SPO, van der Jeugt B, Dewitte W, Prinsen E, Van Onckelen HA, Debergh PC (1995) The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep 14:662–665

    CAS  PubMed  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    CAS  PubMed  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences 98:10487–10492

    CAS  Google Scholar 

  • Wild S (2015) Bushmen cure-all offers locals a sustainable income. Retrieved from https://mg.co.za/article/2015-02-19-bushmen-cure-all-offers-locals-a-sustainable-income/. Accessed on 8 December 2020

  • Yancheva SD, Golubowicz S, Fisher E, Lev-Yadun S, Flaishman MA (2003) Auxin type and timing of application determine the activation of the developmental program during in vitro organogenesis in apple. Plant Sci 165:299–309

    CAS  Google Scholar 

  • Yeboah JSTL, Lowor ST, Amoah FM (2009) The rooting performance of Shea (Vitellaria paradoxa C.F. Gaertn) cuttings leached in water and application of rooting hormones in different media. J Plant Sci 4:10–14

    Google Scholar 

  • Yildirim AB, Turker AU (2014) Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Sci Hortic 169:169–178

    CAS  Google Scholar 

  • Zhang R, Zhang X, Wang J, Letham DS, McKinney SA, Higgins TJV (1995) The effect of auxin on cytokinin levels and metabolism in transgenic tobacco tissue expressing an ipt gene. Planta 196:84–94

    CAS  Google Scholar 

  • Zürcher E, Müller B (2016) Cytokinin synthesis, signaling, and function—advances and new insights. In: Jeon KW (ed) International Review of Cell and Molecular Biology, vol 324:1–38 doi:https://doi.org/10.1016/bs.ircmb.2016.01.001

Download references

Acknowledgements

We are indebted to Dr J. H. de Lange for generously donating plant material for this study. This research was supported by an ERDF project entitled “Development of Pre-Applied Research in Nanotechnology and Biotechnology” (No. CZ.02.1.01/0.0/0.0/17_048/0007323).

Funding

This research was supported by a European Regional Development Fund project entitled “Development of Pre-Applied Research in Nanotechnology and Biotechnology” (No. CZ.02.1.01/0.0/0.0/17_048/0007323).

Author information

Authors and Affiliations

Authors

Contributions

A.S, J.F.F and J.V.S conceived the research idea and design. J.V.S was responsible for the distribution of the materials necessary for the study. A.S conducted the vegetative propagation experiments. L.P and K.D performed the UHPLC-MS/MS analysis. A.S performed the subsequent data analysis and writing of the manuscript. J.F.F and J.V.S supervised the research. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Johannes Van Staden.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Consent for Publication

The authors grant permission for this work to be published.

Additional information

Communicated by Ali R. Alan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekissoon, A., Plačková, L., Doležal, K. et al. In vitro and ex vivo vegetative propagation and cytokinin profiles of Sceletium tortuosum (L.) N. E. Br.: a South African medicinal plant. Plant Cell Tiss Organ Cult 145, 191–202 (2021). https://doi.org/10.1007/s11240-020-02001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-02001-2

Keywords

Navigation