Number of the records: 1  

Thermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation

  1. 1.
    SYSNO ASEP0538049
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleThermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation
    Author(s) Frost, Miroslav (UT-L) RID, ORCID
    Benešová, Barbora (UT-L) RID, ORCID
    Seiner, Hanuš (UT-L) RID, ORCID
    Kružík, Martin (UTIA-B) RID, ORCID
    Sedlák, Petr (UT-L) RID, ORCID
    Šittner, Petr (FZU-D) RID, ORCID
    Number of authors6
    Source TitleInternational Journal of Solids and Structures. - : Elsevier - ISSN 0020-7683
    Roč. 221, č. 1 (2021), s. 117-129
    Number of pages13 s.
    Publication formPrint - P
    Languageeng - English
    CountryGB - United Kingdom
    KeywordsNiTi shape memory alloys ; constitutive modeling ; localization ; Mori-Tanaka method
    Subject RIVBA - General Mathematics
    OECD categoryPure mathematics
    Subject RIV - cooperationInstitute of Thermomechanics - Metallurgy
    Institute of Physics - Solid Matter Physics ; Magnetism
    R&D ProjectsGA18-03834S GA ČR - Czech Science Foundation (CSF)
    Method of publishingLimited access
    Institutional supportUTIA-B - RVO:67985556 ; UT-L - RVO:61388998 ; FZU-D - RVO:68378271
    UT WOS000642497400010
    EID SCOPUS85091486492
    DOI10.1016/j.ijsolstr.2020.08.012
    AnnotationThe work presents a thermomechanical model for polycrystalline NiTi-based shape memory alloys developed within the framework of generalized standard solids, which is able to cover loading-mode dependent localization of the martensitic transformation. The key point is the introduction of a novel austenite–martensite interaction term responsible for the strain-softening of the material. Mathematical properties of the model are analyzed, and a suitable regularization and a time-discrete approximation for numerical implementation to the finite-element method are proposed. Model performance is illustrated on two numerical simulations: the tension of a superelastic NiTi ribbon and bending of a superelastic NiTi tube.
    WorkplaceInstitute of Information Theory and Automation
    ContactMarkéta Votavová, votavova@utia.cas.cz, Tel.: 266 052 201.
    Year of Publishing2022
    Electronic addresshttps://doi.org/10.1016/j.ijsolstr.2020.08.012
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.