Number of the records: 1  

Comparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sand\nmixture

  1. 1.
    SYSNO ASEP0463747
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleComparative modelling of laboratory experiments for the hydro-mechanical behaviour of a compacted bentonite–sand
    mixture
    Author(s) Millard, A. (FR)
    Mokni, N. (FR)
    Barnichon, J. D. (FR)
    Tatcher, K. E. (FR)
    Bond, A. (GB)
    Mc Dermott, C. (GB)
    Blaheta, Radim (UGN-S) RID, SAI, ORCID
    Michalec, Zdeněk (UGN-S)
    Hasal, Martin (UGN-S)
    Nguyen, T. S. (CA)
    Nasir, O. (CA)
    Fedors, S. (US)
    Yi, H. (DE)
    Kolditz, O. (DE)
    Number of authors15
    Source TitleEnvironmental Earth Sciences. - : Springer - ISSN 1866-6280
    Roč. 75, č. 20 (2016), s. 1311-1327
    Number of pages18 s.
    Publication formOnline - E
    ActionDECOVALEX 2015 /8./
    Event date13.10.2015 - 16.10.2015
    VEvent locationWakkanai
    CountryJP - Japan
    Event typeWRD
    Languageeng - English
    CountryDE - Germany
    Keywordshydro-mechanical (hm) coupling ; numerical modelling ; sealing systems ; compacted bentonite–sand mixture
    Subject RIVDB - Geology ; Mineralogy
    Institutional supportUGN-S - RVO:68145535
    UT WOS000385135100012
    DOI10.1007/s12665-016-6118-z
    AnnotationA comparative modelling exercise involving several independent teams from the DECOVALEX-2015 project is presented in this paper. The exercise is based on various laboratory experiments that have been carried out in the framework of a French research programme called SEALEX and conducted by the IRSN. The programme focuses on the long-term performance of swelling clay-based sealing systems that provide an important contribution to the safety of underground nuclear waste disposal facilities. A number of materials are being considered in the sealing systems; the current work focuses on a 70/30 MX80 bentonite–sand mixture compacted at dry densities between 1.67 and 1.97 Mg/m3. The improved understanding of the full set of hydro-mechanical processes affecting the behaviour of an in situ sealing system requires both experiments ranging from small-scale laboratory tests to full-scale field emplacement studies and coupled hydro-mechanical models that are able to explain the observations in the experiments. The approach was to build models of increasing complexity starting for the simplest laboratory experiments and building towards the full-scale in situ experiments. Following this approach, two sets of small-scale laboratory experiments have been performed and modelled. The first set of experiments involves characterizing the hydro-mechanical behaviour of the bentonite–sand mixture by means of (1) water retention tests under both constant volume and free swell conditions, (2) infiltration test under constant volume condition, and (3) swelling and compression tests under suction control conditions. The second, more complex, experiment is a 1/10th scale mock-up of a larger-scale in situ experiment. Modelling of the full-scale experiment is described in a companion paper.
    WorkplaceInstitute of Geonics
    ContactLucie Gurková, lucie.gurkova@ugn.cas.cz, Tel.: 596 979 354
    Year of Publishing2017
    Electronic addresshttp://link.springer.com/article/10.1007/s12665-016-6118-z
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.