Number of the records: 1  

Single-cell-based system to monitor carrier driven cellular auxin homeostasis

  1. 1.
    SYSNO ASEP0395429
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleSingle-cell-based system to monitor carrier driven cellular auxin homeostasis
    Author(s) Barbez, E. (BE)
    Laňková, Martina (UEB-Q) RID, ORCID
    Pařezová, Markéta (UEB-Q)
    Maizel, A. (DE)
    Zažímalová, Eva (UEB-Q) RID, ORCID
    Petrášek, Jan (UEB-Q) RID, ORCID
    Friml, J. (BE)
    Kleine-Vehn, J. (BE)
    Source TitleBMC Plant Biology. - : BioMed Central - ISSN 1471-2229
    Roč. 13, FEB 4 (2013)
    Number of pages12 s.
    Languageeng - English
    CountryGB - United Kingdom
    KeywordsAuxin homeostasis ; DR5 ; Auxin carrier
    Subject RIVED - Physiology
    R&D ProjectsGAP305/11/0797 GA ČR - Czech Science Foundation (CSF)
    GAP305/11/2476 GA ČR - Czech Science Foundation (CSF)
    CEZAV0Z50380511 - UEB-Q (2005-2011)
    UT WOS000315715700001
    DOI10.1186/1471-2229-13-20
    AnnotationBackground: Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results: We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN) 2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions: This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin.
    WorkplaceInstitute of Experimental Botany
    ContactDavid Klier, knihovna@ueb.cas.cz, Tel.: 220 390 469
    Year of Publishing2014
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.