Number of the records: 1  

Utility of quantitative MRI metrics in human brain ageing research

  1. 1.
    SYSNO ASEP0568186
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleUtility of quantitative MRI metrics in human brain ageing research
    Author(s) Filip, P. (CZ)
    Kokošová, V. (CZ)
    Valenta, Zdeněk (UIVT-O) RID, SAI, ORCID
    Baláž, M. (CZ)
    Mangia, S. (US)
    Michaeli, S. (US)
    Vojtíšek, L. (CZ)
    Article number1099499
    Source TitleFrontiers in Aging Neuroscience. - : Frontiers Media - ISSN 1663-4365
    Roč. 15, March (2023)
    Number of pages10 s.
    Publication formOnline - E
    Languageeng - English
    CountryCH - Switzerland
    Keywordsageing ; quantitative MRI ; rotating frame relaxometry ; diffusion weighted imaging ; resting state functional MRI
    Subject RIVFH - Neurology
    OECD categoryClinical neurology
    R&D ProjectsLM2018129 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Method of publishingOpen access
    Institutional supportUIVT-O - RVO:67985807
    UT WOS000954641900001
    EID SCOPUS85150736986
    DOI10.3389/fnagi.2023.1099499
    AnnotationThe advent of new, advanced quantitative MRI metrics allows for in vivo evaluation of multiple biological processes highly relevant for ageing. The presented study combines several MRI parameters hypothesised to detect distinct biological characteristics as myelin density, cellularity, cellular membrane integrity and iron concentration. 116 healthy volunteers, continuously distributed over the whole adult age span, underwent a multi-modal MRI protocol acquisition. Scatterplots of individual MRI metrics revealed that certain MRI protocols offer much higher sensitivity to early adulthood changes while plateauing in higher age (e.g. global functional connectivity in cerebral cortex or orientation dispersion index in white matter), while other MRI metrics provided reverse ability – stable levels in young adulthood with sharp changes with rising age (e.g. T1ρ and T2ρ). Nonetheless, despite the previously published validations of specificity towards microstructural biology based on cytoarchitectonic maps in healthy population or alterations in certain pathologies, several metrics previously hypothesised to be selective to common measures failed to show similar scatterplot distributions, pointing to further confounding factors directly related to age. Furthermore, other metrics, previously shown to detect different biological characteristics, exhibited substantial intercorrelations, be it due to the nature of the MRI protocol itself or co-dependence of relevant biological microstructural processes. All in all, the presented study provides a unique basis for the design and choice of relevant MRI parameters depending on the age group of interest. Furthermore, it calls for caution in simplistic biological inferences in ageing based on one simple MRI metric, even though previously validated under other conditions. Complex multi-modal approaches combining several metrics to extract the shared subcomponent will be necessary to achieve the desired goal of histological MRI.
    WorkplaceInstitute of Computer Science
    ContactTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Year of Publishing2024
    Electronic addresshttps://doi.org/10.3389/fnagi.2023.1099499
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.