Number of the records: 1  

A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe.

  1. 1.
    SYSNO ASEP0541265
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleA European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe.
    Author(s) Bressi, M. (IT)
    Cavalli, F. (IT)
    Putaud, J.P. (IT)
    Fröhlich, B. (CH)
    Petit, J.-E. (FR)
    Aas, W. (NO)
    Äijälä, M. (FI)
    Alastuey, A. (ES)
    Allan, J.J. (GB)
    Aurela, M. (FI)
    Berico, M. (IT)
    Bougiatioti, A. (GR)
    Bukowiecki, N. (CH)
    Canonaco, F. (CH)
    Crenn, V. (FR)
    Dusanter, S. (FR)
    Ehn, M. (FI)
    Elsasser, M. (DE)
    Flentje, H. (DE)
    Graf, P. (CH)
    Green, D.C. (GB)
    Heikkinen, L. (FI)
    Hermann, H. (DE)
    Holzinger, R. (NL)
    Hueglin, C. (CH)
    Keernik, H. (EE)
    Kiendler-Scharr, A. (DE)
    Kubelová, Lucie (UCHP-M) RID, ORCID, SAI
    Lunder, C. (NO)
    Maasikmets, M. (EE)
    Makeš, Otakar (UCHP-M) RID, ORCID, SAI
    Malaguti, A. (IT)
    Mihalopoulos, N. (GR)
    Nicolas, J.B. (FR)
    O’Dowd, C. (IE)
    Ovadnevaite, J. (IE)
    Petralia, E. (IT)
    Poulain, L. (DE)
    Priestman, M. (GB)
    Riffault, V. (FR)
    Ripoll, A. (ES)
    Schlag, P. (DE)
    Schwarz, Jaroslav (UCHP-M) RID, ORCID, SAI
    Sciare, J. (FR)
    Slowik, J. (CH)
    Sosedova, Y. (CH)
    Stavroulas, I. (GR)
    Teinemaa, E. (EE)
    Via, M. (ES)
    Vodička, Petr (UCHP-M) RID, ORCID, SAI
    Williams, P.I. (GB)
    Article number100108
    Source TitleAtmospheric Environment. - : Elsevier - ISSN 1352-2310
    Roč. 10, April 21 (2021)
    Number of pages16 s.
    Languageeng - English
    CountryGB - United Kingdom
    Keywordsaerosol ; chemical composition ; mass spectroscopy ; phenomenology
    Subject RIVDI - Air Pollution ; Quality
    OECD categoryEnvironmental sciences (social aspects to be 5.7)
    R&D ProjectsLTC18068 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    EF16_013/0001315 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Method of publishingOpen access
    Institutional supportUCHP-M - RVO:67985858
    UT WOS000660094500004
    EID SCOPUS85102803508
    DOI10.1016/j.aeaoa.2021.100108
    AnnotationSimilarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located between 35 and 62◦N and 10◦ W – 26◦E, and represent various types of settings (remote, coastal, rural, industrial, urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations, as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the mid-latitude band than in southern and northern Europe. On average, organics account for the major part (36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in mid-latitude Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/ m3) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate can be observed at a majority of sites both in winter and summer. Early morning minima in organics in concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1 at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration and predominates when NR-PM1 mass concentrations exceed 40 μg/m3 at half of the sites.
    WorkplaceInstitute of Chemical Process Fundamentals
    ContactEva Jirsová, jirsova@icpf.cas.cz, Tel.: 220 390 227
    Year of Publishing2022
    Electronic addresshttps://www.sciencedirect.com/science/article/pii/S2590162121000083?via%3Dihub
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.