Number of the records: 1  

K-convergence as a new tool in numerical analysis

  1. 1.
    SYSNO ASEP0533370
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleK-convergence as a new tool in numerical analysis
    Author(s) Feireisl, Eduard (MU-W) RID, SAI, ORCID
    Lukáčová-Medviďová, M. (DE)
    Mizerová, Hana (MU-W) SAI, RID
    Source TitleIMA Journal of Numerical Analysis - ISSN 0272-4979
    Roč. 40, č. 4 (2020), s. 2227-2255
    Number of pages29 s.
    Languageeng - English
    CountryGB - United Kingdom
    KeywordsK-convergence ; numerical analysis
    Subject RIVBA - General Mathematics
    OBOR OECDPure mathematics
    R&D ProjectsGA18-05974S GA ČR - Czech Science Foundation (CSF)
    Způsob publikováníOmezený přístup
    Institutional supportMU-W - RVO:67985840
    UT WOS000610489200004
    EID SCOPUS85087023422
    DOI10.1093/imanum/drz045
    AnnotationWe adapt the concept of K-convergence of Young measures to the sequences of approximate solutions resulting from numerical schemes. We obtain new results on pointwise convergence of numerical solutions in the case when solutions of the limit continuous problem possess minimal regularity. We apply the abstract theory to a finite volume method for the isentropic Euler system describing the motion of a compressible inviscid fluid. The result can be seen as a nonlinear version of the fundamental Lax equivalence theorem.
    WorkplaceMathematical Institute
    ContactJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Year of Publishing2021
    Electronic addresshttps://doi.org/10.1093/imanum/drz045
Number of the records: 1