Number of the records: 1  

Spectral stability of Schrodinger operators with subordinated complex potentials

  1. 1.
    SYSNO ASEP0490632
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleSpectral stability of Schrodinger operators with subordinated complex potentials
    Author(s) Fanelli, L. (IT)
    Krejčiřík, David (UJF-V) RID
    Vega, L. (ES)
    Number of authors3
    Source TitleJournal of Spectral Theory - ISSN 1664-039X
    Roč. 8, č. 2 (2018), s. 575-604
    Number of pages30 s.
    Publication formPrint - P
    Languageeng - English
    CountryCH - Switzerland
    KeywordsNon-self-adjoint Schrödinger operator ; subordinate complex potential ; absence of eigenvalues ; spectral stability ; Birman-Schwinger principle ; technique of multipliers
    Subject RIVBA - General Mathematics
    OBOR OECDApplied mathematics
    R&D ProjectsGA14-06818S GA ČR - Czech Science Foundation (CSF)
    Institutional supportUJF-V - RVO:61389005
    UT WOS000434255700011
    EID SCOPUS85048786497
    AnnotationWe prove that the spectrum of Schrodinger operators in three dimensions is purely continuous and coincides with the non-negative semiaxis for all potentials satisfying a form-subordinate smallness condition. By developing the method of multipliers, we also establish the absence of point spectrum for Schrodinger operators in all dimensions under various alternative hypotheses, still allowing complex-valued potentials with critical singularities.
    WorkplaceNuclear Physics Institute
    ContactMarkéta Sommerová,, Tel.: 266 173 228 ; Renata Glasová,, Tel.: 266 177 223
    Year of Publishing2019
Number of the records: 1