Number of the records: 1  

Non-accretive Schrodinger operators and exponential decay of their eigenfunctions

  1. 1.
    SYSNO ASEP0479658
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleNon-accretive Schrodinger operators and exponential decay of their eigenfunctions
    Author(s) Krejčiřík, David (UJF-V) RID
    Raymond, N. (FR)
    Royer, J. (FR)
    Siegl, Petr (UJF-V) RID
    Number of authors4
    Source TitleIsrael Journal of Mathematics - ISSN 0021-2172
    Roč. 221, č. 2 (2017), s. 779-802
    Number of pages24 s.
    Publication formPrint - P
    Languageeng - English
    CountryIL - Israel
    Keywordsnon-self-adjoint electromagnetic Schrodinger operators ; Dirichlet realisation ; Agmon-type exponential decay
    Subject RIVBA - General Mathematics
    OBOR OECDPure mathematics
    R&D ProjectsGA14-06818S GA ČR - Czech Science Foundation (CSF)
    Institutional supportUJF-V - RVO:61389005
    UT WOS000411582300011
    EID SCOPUS85029802037
    DOI10.1007/s11856-017-1574-z
    AnnotationWe consider non-self-adjoint electromagnetic Schrodinger operators on arbitrary open sets with complex scalar potentials whose real part is not necessarily bounded from below. Under a suitable sufficient condition on the electromagnetic potential, we introduce a Dirichlet realisation as a closed densely defined operator with non-empty resolvent set and show that the eigenfunctions corresponding to discrete eigenvalues satisfy an Agmon-type exponential decay.
    WorkplaceNuclear Physics Institute
    ContactMarkéta Sommerová, sommerova@ujf.cas.cz, Tel.: 266 173 228 ; Renata Glasová, glasova@ujf.cas.cz, Tel.: 266 177 223
    Year of Publishing2018
Number of the records: 1