Number of the records: 1  

Thermal stability of perovskite phase in heavily Mn-doped SrTiO3 nanoparticles in oxidizing and reducing atmospheres

  1. 1.
    SYSNO ASEP0470445
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleThermal stability of perovskite phase in heavily Mn-doped SrTiO3 nanoparticles in oxidizing and reducing atmospheres
    Author(s) Makarova, Marina (FZU-D) RID, ORCID
    Artemenko, Anna (FZU-D) RID, ORCID
    Kopeček, Jaromír (FZU-D) RID, ORCID
    Laufek, František (FZU-D) RID
    Zemenová, Petra (FZU-D) RID, ORCID
    Trepakov, Vladimír (FZU-D) RID
    Dejneka, Alexandr (FZU-D) RID, ORCID
    Source TitleScripta Materialia. - : Elsevier - ISSN 1359-6462
    Roč. 116, Apr (2016), s. 21-25
    Number of pages5 s.
    Languageeng - English
    CountryUS - United States
    Keywordssurface segregation ; perovskite ; nanocrystalline microstructure ; thermally activated processes ; metastable phases
    Subject RIVBM - Solid Matter Physics ; Magnetism
    R&D ProjectsGBP108/12/G108 GA ČR - Czech Science Foundation (CSF)
    TA03010743 GA TA ČR - Technology Agency of the Czech Republic (TA ČR)
    LO1409 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    LM2015088 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Institutional supportFZU-D - RVO:68378271
    UT WOS000372560300005
    EID SCOPUS84959548196
    DOI10.1016/j.scriptamat.2016.01.029
    AnnotationComplex investigations of the thermal stability as well as Mn-dopant distribution depending on chemical composition and processing condition have been performed in heavily doped SrTi1-xMnxO3 nanoparticles with x = 0.2 and 0.4. Prepared nanopowders reveal stable enough cubic perovskite structure even after treatment in oxidizing atmosphere up to 1000 °C. At the same time treatment in reducing atmosphere leads to decrease of the Mn solubility limit. Mn distribution evidences a weak tendency of Mn ions to migrate to surface. This migration increases in air and decreases at treatment in oxygen atmosphere.
    WorkplaceInstitute of Physics
    ContactKristina Potocká, potocka@fzu.cz, Tel.: 220 318 579
    Year of Publishing2017
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.