Number of the records: 1  

Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

  1. 1.
    SYSNO ASEP0450283
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleAlternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium
    Author(s) Smolkova, I.S. (CZ)
    Kazantseva, N.E. (CZ)
    Babayan, V. (CZ)
    Smolka, P. (CZ)
    Parmar, H. (CZ)
    Vilcakova, J. (CZ)
    Schneeweiss, Oldřich (UFM-A) RID, ORCID
    Pizúrová, Naděžda (UFM-A) RID, ORCID
    Number of authors8
    Source TitleJournal of Magnetism and Magnetic Materials. - : Elsevier - ISSN 0304-8853
    Roč. 374, JAN (2015), s. 508-515
    Number of pages8 s.
    Languageeng - English
    CountryNL - Netherlands
    KeywordsIron oxide nanoparticles ; Coprecipitation ; Magnetic interactions ; Specific loss power ; Hyperthermia
    Subject RIVBM - Solid Matter Physics ; Magnetism
    Institutional supportUFM-A - RVO:68081723
    UT WOS000344949000082
    EID SCOPUS84907279771
    DOI10.1016/j.jmmm.2014.08.096
    AnnotationMagnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 degrees C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g(-1) to 48 emu g(-1) but does not affect the healing ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high healing rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g(-1). This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sexes on Mossbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.
    WorkplaceInstitute of Physics of Materials
    ContactYvonna Šrámková, sramkova@ipm.cz, Tel.: 532 290 485
    Year of Publishing2016
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.