Number of the records: 1  

Resonant Infrared Multiple Photon Dissociation Spectroscopy of Anionic Nucleotide Monophosphate Clusters

  1. 1.
    SYSNO ASEP0446133
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleResonant Infrared Multiple Photon Dissociation Spectroscopy of Anionic Nucleotide Monophosphate Clusters
    Author(s) Ligare, M. R. (US)
    Rijs, A. M. (NL)
    Berden, G. (NL)
    Kabeláč, M. (CZ)
    Nachtigallová, Dana (UOCHB-X) RID, ORCID
    Oomens, J. (NL)
    de Vries, M. S. (US)
    Number of authors7
    Source TitleJournal of Physical Chemistry B. - : American Chemical Society - ISSN 1520-6106
    Roč. 119, č. 25 (2015), s. 7894-7901
    Number of pages8 s.
    Languageeng - English
    CountryUS - United States
    KeywordsDNA polymerase beta ; gas-phase conformations ; excited-state dynamics
    Subject RIVCF - Physical ; Theoretical Chemistry
    R&D ProjectsGAP208/12/1318 GA ČR - Czech Science Foundation (CSF)
    Institutional supportUOCHB-X - RVO:61388963
    UT WOS000357139800012
    EID SCOPUS84933055310
    DOI10.1021/acs.jpcb.5b02222
    AnnotationWe report mid-infrared spectra and potential energy surfaces of four anionic, 2'-deoxynucleotide-5'-monophosphates (dNMPs) and the ionic DNA pairs [dGMP-dCMP-H](1-), [dAMP-dTMP-H](1-) with a total charge of the complex equal to -1. We recorded IR action Spectra by resonant IR multiple-photon dissociation (IRMPD) using the FELIX free electron laser. The potential energy surface study employed an on-the-fly molecular dynamics quenching method (MD/Q), using a semiempirical AM1 method, followed by an optimization of the most stable structures using density functional theory. By employing infrared multiple-photon dissociation (IRMPD) spectroscopy in combination with high-level computational methods, we aim at a better understanding of the hydrogen bonding competition between the phosphate, moieties and the nucleobases. We find that, unlike in multimer double stranded DNA structures, the hydrogen bonds in these isolated nucleotide pairs are predominantly formed between the phosphate groups. This intermolecular interaction appears to exceed the stabilization energy resulting from base pairing and directs the overall cluster structure and alignment.
    WorkplaceInstitute of Organic Chemistry and Biochemistry
    Contactasep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Viktorie Chládková, Tel.: 232 002 434
    Year of Publishing2016
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.