Number of the records: 1  

Nuclear PIP2 and myosin I: new important players in DNA transcription

  1. 1.
    SYSNO ASEP0389003
    Document TypeC - Proceedings Paper (int. conf.)
    R&D Document TypeConference Paper
    TitleNuclear PIP2 and myosin I: new important players in DNA transcription
    Author(s) Yildirim, Sukriye (UMG-J)
    Castano, Enrique (UMG-J)
    Philimonenko, Vlada (UMG-J)
    Dzijak, Rastislav (UMG-J) RID
    Sobol, Margaryta (UMG-J) RID
    Venit, Tomáš (UMG-J) RID, ORCID
    Hozák, Pavel (UMG-J) RID, ORCID
    Source Titleemc2012 manchester, european microscopy congress. - Manchester : RMS, IFSM, 2012 - ISBN 978-0-9502463-7-6
    Pagess. 77-77
    Number of pages1 s.
    Publication formPrint - P
    Action15th European Microscopy Congress
    Event date16.09.2012-21.09.2012
    VEvent locationManchester
    CountryGB - United Kingdom
    Event typeEUR
    Languageeng - English
    CountryGB - United Kingdom
    KeywordsMyosin ; PIP2 ; transcription
    Subject RIVEB - Genetics ; Molecular Biology
    R&D ProjectsGAP305/11/2232 GA ČR - Czech Science Foundation (CSF)
    LC545 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    LC06063 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    FR-TI3/588 GA MPO - Ministry of Industry and Trade (MPO)
    GD204/09/H084 GA ČR - Czech Science Foundation (CSF)
    Institutional supportUMG-J - RVO:68378050
    CEZAV0Z50520514 - UMG-J (2005-2011)
    AnnotationNuclear myosin I (NM1) is a 120 kDa molecular motor described in the cell nucleus. NM1 was shown to be involved in chromatin remodeling, repositioning of transcriptionally activated regions and also in transcription with RNA pol I. Myosin 1C binds to negatively charged phospholipids, specifically to phosphatidylinositol-(4,5)bisphosphate (PIP2) and this binding tethers myosin I to plasma membrane. Based on this we asked if NM1 also has binding properties to PIP2. We made single-point mutations in the pleckstrin homology (PH) domain of NM1 and applied fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). Mutant NM1 became faster in mobility compared to its wild type NM1. We then depleted  PIP2 in the nucleus by co-transfecting the cells with inositol 5-phosphatase. After PIP2 depletion in nuclei, NM1 became faster showing once more that PIP2 binding reduces NM1 mobility. Phospholipase C delta (PLCδ) is an enzyme which binds to PIP2 via its PH domain and cleaves PIP2 into inositol (1,4,5) triphosphate and DAG. We mutated the PIP2 binding domain of PLCδPH and co-transfected cells with NM1and wild type or mutant PLCδPH. FRAP showed that NM1 mobility increased when PIP2 was occupied by wild type PLC compared to mutant one. All these data indicated that NM1 binds to PIP2 in the cell nucleus, and this was further confirmed by electron microscopy. We then focused on the function of PIP2 in ribosomal gene transcription and showed that PIP2 binds to the transcription machinery. Removal of PIP2 from in vitro transcription assays caused the inhibiton of transcription for ribosomal genes and it was possible to recover the transcription efficiency by adding back PIP2 to the transcription reaction. The data suggest that nucleolar PIP2 might serve as a transcription factor for ribosomal genes, and together with nucleolar myosin I it might form the structural core of nucleoli. Involvement of other structural proteins will be discussed.
    WorkplaceInstitute of Molecular Genetics
    ContactNikol Škňouřilová, nikol.sknourilova@img.cas.cz, Tel.: 241 063 217
    Year of Publishing2013
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.