Number of the records: 1  

Kinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results

  1. 1.
    SYSNO ASEP0337453
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleKinetic instabilities in Mercury's magnetosphere: Three-dimensional simulation results
    TitleKinetická instabilita v magnetosféře Merkuru: výsledky třídimenzionální simulace
    Author(s) Trávníček, Pavel M. (ASU-R) RID, ORCID
    Hellinger, Petr (UFA-U) RID, ORCID
    Schriver, D. (US)
    Herčík, David (UFA-U) RID, ORCID
    Slavin, J.A. (US)
    Anderson, B.J. (US)
    Source TitleGeophysical Research Letters. - : Wiley - ISSN 0094-8276
    Roč. 36, - (2009), L07104/1-L07104/5
    Number of pages5 s.
    Languageeng - English
    CountryUS - United States
    KeywordsMercury ; magnetosphere ; instability ; ion temperature anisotropy ; plasma flow ; magnetosheath
    Subject RIVBL - Plasma and Gas Discharge Physics
    R&D ProjectsIAA300030805 GA AV ČR - Academy of Sciences of the Czech Republic (AV ČR)
    CEZAV0Z30420517 - UFA-U, BC-A (2005-2011)
    AV0Z10030501 - ASU-R (2005-2011)
    UT WOS000265101400001
    DOI10.1029/2008GL036630
    AnnotationA self-consistent global three-dimensional kinetic study of Mercury's magnetosphere is carried out examining waves and instabilities generated by ion temperature anisotropy and plasma flow. The overall structure of Mercury's upstream bow shock and magnetosheath are qualitatively very similar to those of Earth. Beam-generated long-wavelength oscillations are present upstream of Mercury's quasi-parallel bow shock, whereas large-amplitude mirror waves develop downstream of the quasi-parallel bow shock in the magnetosheath. A train of mirror waves forms also downstream of the quasi-perpendicular bow shock. A velocity shear near the magnetopause can lead to formation of vortex-like structures. The magnetospheric cavity close to the planet's equatorial plane is filled with ions much hotter than the solar wind protons. A drift-driven plasma belt close to the equator is present in the model and contains plasma with high-temperature anisotropy, and the loss cone for charged particles in this region is large.
    WorkplaceInstitute of Atmospheric Physics
    ContactKateřina Adamovičová, adamovicova@ufa.cas.cz, Tel.: 272 016 012 ; Kateřina Potužníková, kaca@ufa.cas.cz, Tel.: 272 016 019
    Year of Publishing2010
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.