Number of the records: 1  

By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?

  1. 1.
    Gutknecht, M. H. - Rozložník, Miroslav
    By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?
    Numerical Algorithms. Roč. 27, - (2001), s. 189-213. ISSN 1017-1398
    Impact factor: 0.438, year: 2001
    http://hdl.handle.net/11104/0124515

    Cited: 5

    --- SIMONCINI, V. - SZYLD, D.B. Recent computational developments in Krylov subspace methods for linear systems. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. ISSN 1070-5325, FEB 2007, vol. 14, no. 1, p. 1-59. [WOS]
    --- JING, Y.F. - HUANG, T.Z. - ZHANG, Y. - LI, L. - CHENG, G.H. - REN, Z.G. - DUAN, Y. - SOGABE, T. - CARPENTIERI, B. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. JOURNAL OF COMPUTATIONAL PHYSICS. ISSN 0021-9991, SEP 20 2009, vol. 228, no. 17, p. 6376-6394. [WOS]
    --- Broyden, C.H. - Vespucci, M.T. Krylov solvers for linear algebraic systems. Amsterdam : Elsevier 2004
    --- YANG, A.L. - CAO, Y. - WU, Y.J. Minimum residual Hermitian and skew-Hermitian splitting iteration method for non-Hermitian positive definite linear systems. BIT NUMERICAL MATHEMATICS. ISSN 0006-3835, MAR 2019, vol. 59, no. 1, p. 299-319. [WOS]
    --- SOODHALTER, K.M. STAGNATION OF BLOCK GMRES AND ITS RELATIONSHIP TO BLOCK FOM. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS. ISSN 1068-9613, 2017, vol. 46, p. 162-189. [WOS]