Number of the records: 1  

A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions

  1. SYS0458817
    LBL
      
    01000a^^22220027750^450
    005
      
    20191016092717.5
    014
      
    $a 84957589965 $2 SCOPUS
    014
      
    $a 000369303200001 $2 WOS
    017
      
    $a 10.1007/s10492-016-0119-9 $2 DOI
    100
      
    $a 20160420d m y slo 03 ba
    101
      
    $a eng
    102
      
    $a CZ
    200
    1-
    $a A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions
    215
      
    $a 25 s. $c P
    463
    -1
    $1 001 cav_un_epca*0290654 $1 011 $a 0862-7940 $1 200 1 $a Applications of Mathematics $v Roč. 61, č. 1 (2016), s. 1-25 $1 210 $c Matematický ústav AV ČR, v. v. i.
    610
      
    $a reaction-diffusion system
    610
      
    $a unlateral condition
    610
      
    $a variational inequality
    700
    -1
    $3 cav_un_auth*0330049 $a Eisner $b Jan $i Laboratoř genetiky ryb $j Laboratory of Fish Genetics $k LGR $p UZFG-Y $o Laboratoř genetiky ryb $T Ústav živočišné fyziologie a genetiky AV ČR, v. v. i.
    701
    -1
    $3 cav_un_auth*0100675 $a Kučera $b Milan $i Evoluční diferenciální rovnice $j Evolution Differential Equations $l EDE $p MU-W $o Evoluční diferenciální rovnice $w Evoluční diferenciální rovnice $T Matematický ústav AV ČR, v. v. i.
    701
    -1
    $3 cav_un_auth*0267722 $a Väth $b Martin $i Evoluční diferenciální rovnice $j Evolution Differential Equations $l EDE $p MU-W $o Evoluční diferenciální rovnice $w Evoluční diferenciální rovnice $T Matematický ústav AV ČR, v. v. i.