Number of the records: 1  

By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?

  1. SYS0404252
    LBL
      
    00000nam^^22^^^^^^^^450
    005
      
    20190916132340.3
    014
      
    $a 000172675300005 $2 WOS
    014
      
    $a 0035602327 $2 SCOPUS
    017
    70
    $a 10.1023/A:1011889705659 $2 DOI
    101
    0-
    $a eng $d eng
    102
      
    $a NL
    200
    1-
    $a By how much can Residual Minimization Accelerate the Convergence of Orthogonal Residual Methods?
    215
      
    $a 25 s.
    463
    -1
    $1 001 cav_un_epca*0254541 $1 011 $a 1017-1398 $1 200 1 $a Numerical Algorithms $v Roč. 27, - (2001), s. 189-213
    610
    1-
    $a system of linear algebraic equations
    610
    1-
    $a iterative method
    610
    1-
    $a Krylov space method
    610
    1-
    $a conjugate gradient method
    610
    1-
    $a biconjugate gradient method
    610
    1-
    $a CG
    610
    1-
    $a CGNE
    610
    1-
    $a CGNR
    610
    1-
    $a CGS
    610
    1-
    $a FOM
    610
    1-
    $a GMRes
    610
    1-
    $a QMR
    610
    1-
    $a TFQMR
    610
    1-
    $a residual smoothing
    610
    1-
    $a MR smoothing
    610
    1-
    $a QMR smoothing
    700
    -1
    $3 cav_un_auth*0207700 $a Gutknecht $b M. H. $y CH $4 070
    701
    -1
    $3 cav_un_auth*0100819 $a Rozložník $b Miroslav $p UIVT-O $w Oddělení výpočetních metod $4 070 $o Department of Computational Methods $T Ústav informatiky AV ČR, v. v. i.