Number of the records: 1  

QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction

  1. SYS0538137
    LBL
      
    01000a^^22220027750^450
    005
      
    20210803154000.3
    014
      
    $a 33431016 $2 PUBMED
    014
      
    $a 000549151400001 $2 WOS
    017
    70
    $a 10.1186/s13321-020-00444-5 $2 DOI
    100
      
    $a 20210120d m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a GB
    200
    1-
    $a QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction
    215
      
    $a 17 s. $c E
    463
    -1
    $1 001 cav_un_epca*0378364 $1 011 $a 1758-2946 $e 1758-2946 $1 200 1 $a Journal of Cheminformatics $v Roč. 12, č. 1 (2020) $1 210 $c Chemistry Central
    608
      
    $a Article
    610
      
    $a qsar
    610
      
    $a Affinity fingerprints
    610
      
    $a ChEMBL
    610
      
    $a Bioactivity modeling
    610
      
    $a Cytotoxicity
    610
      
    $a Drug sensitivity prediction
    610
      
    $a Drug sensitivity
    700
    -1
    $3 cav_un_auth*0403301 $a Cortes-Ciriano $b I. $y GB $4 070
    701
    -1
    $3 cav_un_auth*0308879 $a Škuta $b Ctibor $p UMG-J $o Laboratory of Cell Differentiation $i Oddělení buněčné diferenciace $j Laboratory of Cell Differentiation $k 38 $l 38 $T Ústav molekulární genetiky AV ČR, v. v. i.
    701
    -1
    $3 cav_un_auth*0403302 $a Bender $b A. $y GB $4 070
    701
    -1
    $3 cav_un_auth*0310735 $a Svozil $b Daniel $p UMG-J $o Laboratory of Cell Differentiation $i Oddělení buněčné diferenciace $j Laboratory of Cell Differentiation $k 38 $l 38 $T Ústav molekulární genetiky AV ČR, v. v. i.
    856
      
    $u https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00444-5 $9 RIV
Number of the records: 1