Number of the records: 1  

The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling

  1. 1.
    0495758 - ÚŽFG 2019 RIV US eng J - Journal Article
    Csukasi, F. - Duran, I. - Barad, M. - Bárta, T. - Gudernová, I. - Trantírek, L. - Martin, J. H. - Kuo, C. Y. - Woods, J. - Lee, H. - Cohn, D. H. - Krejčí, Pavel - Krakow, D.
    The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling.
    Science Translational Medicine. Roč. 10, č. 459 (2018), č. článku eaat9356. ISSN 1946-6234. E-ISSN 1946-6242
    Institutional support: RVO:67985904
    Keywords : terminal differentiation * skeletal growth * cell-growth
    OECD category: Cell biology
    Impact factor: 17.200, year: 2018

    Studies have suggested a role for the mammalian (or mechanistic) target of rapamycin (mTOR) in skeletal development and homeostasis, yet there is no evidence connecting mTOR with the key signaling pathways that regulate skeletogenesis. We identified a parathyroid hormone (PTH)/PTH-related peptide (PTHrP)-salt-inducible kinase 3 (SIK3)-mTOR signaling cascade essential for skeletogenesis. While investigating a new skeletal dysplasia caused by a homozygous mutation in the catalytic domain of SIK3, we observed decreased activity of mTOR complex 1 (mTORC1) and mTORC2 due to accumulation of DEPTOR, a negative regulator of both mTOR complexes. This SIK3 syndrome shared skeletal features with Jansen metaphyseal chondrodysplasia (JMC), a disorder caused by constitutive activation of the PTH/PTHrP receptor. JMC-derived chondrocytes showed reduced SIK3 activity, elevated DEPTOR, and decreased mTORC1 and mTORC2 activity, indicating a common mechanism of disease. The data demonstrate that SIK3 is an essential positive regulator of mTOR signaling that functions by triggering DEPTOR degradation in response to PTH/PTHrP signaling during skeletogenesis.
    Permanent Link: http://hdl.handle.net/11104/0288682

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.