Number of the records: 1  

Act now before its too late: Copper exposure drives chemo-ecology of predator-prey dynamics of freshwater common spiny loach, Lepidocephalichthys thermalis (Valenciennes, 1846)

  1. 1.
    SYSNO ASEP0539249
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleAct now before its too late: Copper exposure drives chemo-ecology of predator-prey dynamics of freshwater common spiny loach, Lepidocephalichthys thermalis (Valenciennes, 1846)
    Author(s) Gosavi, S.M. (IN)
    Tapkir, Sandip Dnyaneshwar (BC-A) RID, ORCID
    Kumkar, P. (CZ)
    Verma, C.R. (IN)
    Kharat, S.S. (IN)
    Number of authors5
    Article number109509
    Source TitleEnvironmental Research. - : Elsevier - ISSN 0013-9351
    Roč. 186, č. 4 (2020), s. 1-12
    Number of pages12 s.
    Languageeng - English
    CountryUS - United States
    KeywordsLearning ; Olfaction ; Survival ; Info-disruption ; Cognition ; Alarm cues
    Subject RIVEH - Ecology, Behaviour
    OECD categoryEcology
    Method of publishingLimited access
    Institutional supportBC-A - RVO:60077344
    UT WOS000548186300043
    EID SCOPUS85083315734
    DOI https://doi.org/10.1016/j.envres.2020.109509
    AnnotationDue to the extensive use of copper (Cu) in various commercial products, its existence in aquatic bodies (freshwater and marine) is not unusual. Cu is well known for its effect on the olfactory physiology of fish. However, there are limited studies on the effect of Cu on important ecological functions in fish (predator-prey dynamics) that are primarily influenced by olfaction. In a series of experiments, we studied the effect of Cu exposure on the chemoreceptive behavior of the prey fish, Lepidocephalichthys thermalis. Prey fishes were exposed to an environmentally relevant concentration (5 mu g/L) of Cu for 3 h and the anti-predator responses against native (Channa gachua) and alien predatory fish (tilapia) were quantified using an ethological assay. Cu exposed prey fishes did not recognize the native predator and had a lower survival rate than control (unexposed) fishes in predation trials. Cu exposed prey fishes have failed to learn associatively to detect a non-native predator resulting in higher mortality in prey population in direct encounters with tilapia. However, such a lack of predator recognition was found to be short-term and the treated prey fishes recovered anti-predator responses within 72 h. In addition, Cu inactivated the alarm cue which acts as a signal for the presence of predators and ensures associative learning and therefore it was considered to be an 'info-disruptor' in the present study. These outcomes together demonstrate that even at low concentration, Cu influences ecological decisions and survival against predators. Owing to the ubiquitous occurrence of Cu in water bodies, the present investigation will contribute to the knowledge of how environmental stressors alter the crucial ecological decisions of prey individuals in aquatic ecosystems. In addition, we suggest that freshwater reservoirs containing high levels of Cu could be unsuitable for the long-term survival of prey fishes and freshwater biodiversity.
    WorkplaceBiology Centre (since 2006)
    ContactDana Hypšová, eje@eje.cz, Tel.: 387 775 214
    Year of Publishing2021
    Electronic addresshttps://doi.org/10.1016/j.envres.2020.109509
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.