- FUME 2.0 – Flexible Universal processor for Modeling Emissions
Number of the records: 1  

FUME 2.0 – Flexible Universal processor for Modeling Emissions

  1. 1.
    SYSNO ASEP0585895
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleFUME 2.0 – Flexible Universal processor for Modeling Emissions
    Author(s) Belda, M. (CZ)
    Benešová, N. (CZ)
    Resler, Jaroslav (UIVT-O) SAI, RID, ORCID
    Huszár, P. (CZ)
    Vlček, O. (CZ)
    Krč, Pavel (UIVT-O) SAI, RID, ORCID
    Karlický, J. (CZ)
    Juruš, Pavel (UIVT-O) SAI, RID
    Eben, Kryštof (UIVT-O) SAI, RID, ORCID
    Source TitleGeoscientific Model Development. - : Copernicus GmbH - ISSN 1991-959X
    Roč. 17, č. 9 (2024), s. 3867-3878
    Number of pages12 s.
    Publication formOnline - E
    Languageeng - English
    CountryDE - Germany
    KeywordsAir quality modelling ; Emission modelling ; SMOKE ; emission inventories ; CTM
    OECD categoryMeteorology and atmospheric sciences
    R&D ProjectsTO01000219 GA TA ČR - Technology Agency of the Czech Republic (TA ČR)
    SS02030031 GA TA ČR - Technology Agency of the Czech Republic (TA ČR)
    Method of publishingOpen access
    Institutional supportUIVT-O - RVO:67985807
    UT WOS001222533900001
    EID SCOPUS85193542888
    DOI https://doi.org/10.5194/gmd-17-3867-2024
    AnnotationThis paper introduces FUME 2.0, an open-source emission processor for air quality modeling, and documents the software structure, capabilities, and sample usage. FUME provides a customizable framework for emission preparation tailored to user needs. It is designed to work with heterogeneous emission inventory data, unify them into a common structure, and generate model-ready emissions for various chemical transport models (CTMs). Key features include flexibility in input data formats, support for spatial and temporal disaggregation, chemical speciation, and integration of external models like MEGAN. FUME employs a modular Python interface and PostgreSQL/PostGIS backend for efficient data handling. The workflow comprises data import, geographical transformation, chemical and temporal disaggregation, and output generation steps. Outputs for mesoscale CTMs CMAQ, CAMx, and WRF-Chem and the large-eddy-simulation model PALM are implemented along with a generic NetCDF format. Benchmark runs are discussed on a typical configuration with cascading domains, with import and preprocessing times scaling near-linearly with grid size. FUME facilitates air quality modeling from continental to regional and urban scales by enabling effective processing of diverse inventory datasets.
    WorkplaceInstitute of Computer Science
    ContactTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Year of Publishing2025
    Electronic addresshttps://doi.org/10.5194/gmd-17-3867-2024
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.