- On complemented copies of the space c0 in spaces Cp(X,E)C_p(X,E)
Number of the records: 1  

On complemented copies of the space c0 in spaces Cp(X,E)C_p(X,E)

  1. 1.
    SYSNO ASEP0582703
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleOn complemented copies of the space c0 in spaces Cp(X,E)C_p(X,E)
    Author(s) Bargetz, Ch. (IL)
    Kąkol, Jerzy (MU-W) SAI, RID, ORCID
    Sobota, D. (AT)
    Source TitleMathematische Nachrichten - ISSN 0025-584X
    Roč. 297, č. 2 (2024), s. 644-656
    Number of pages13 s.
    Publication formPrint - P
    Languageeng - English
    CountryDE - Germany
    KeywordsJosefson-Nissenzweig Theorem ; locally convex spaces ; separately continuous functions
    Subject RIVBA - General Mathematics
    OECD categoryPure mathematics
    R&D ProjectsGF20-22230L GA ČR - Czech Science Foundation (CSF)
    Method of publishingOpen access
    Institutional supportMU-W - RVO:67985840
    UT WOS001067375000001
    EID SCOPUS85170672560
    DOI https://doi.org/10.1002/mana.202300026
    AnnotationWe study the question for which Tychonoff spaces X and locally convex spaces E the space (Formula presented.) of continuous E-valued functions on X contains a complemented copy of the space (Formula presented.), both endowed with the pointwise topology. We provide a positive answer for a vast class of spaces, extending classical theorems of Cembranos, Freniche, and Domański and Drewnowski, proved for the case of Banach and Fréchet spaces (Formula presented.). Also, for given infinite Tychonoff spaces X and Y, we show that (Formula presented.) contains a complemented copy of (Formula presented.) if and only if any of the spaces (Formula presented.) and (Formula presented.) contains such a subspace.
    WorkplaceMathematical Institute
    ContactJarmila Štruncová, struncova@math.cas.cz, library@math.cas.cz, Tel.: 222 090 757
    Year of Publishing2025
    Electronic addresshttps://doi.org/10.1002/mana.202300026
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.