Number of the records: 1  

Exploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia

  1. 1.
    SYSNO ASEP0580559
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleExploring structural and molecular diversity of Ericaceae hair root mycobionts: a comparison between Northern Bohemia and Argentine Patagonia
    Author(s) Vohník, Martin (BU-J) RID, ORCID
    Bruzone, M. C. (AR)
    Knoblochová, Tereza (BU-J) ORCID
    Fernández, N. V. (AR)
    Kolaříková, Zuzana (BU-J) ORCID, RID
    Větrovský, Tomáš (MBU-M) ORCID, RID
    Fontenla, S. B. (AR)
    Source TitleMycorrhiza. - : Springer - ISSN 0940-6360
    Roč. 33, 5-6 (2023), s. 425-447
    Number of pages23 s.
    Languageeng - English
    CountryDE - Germany
    KeywordsCentral Europe ; ericoid mycorrhizal fungi ; fungal root endophytes ; Helotiales ; root-associated fungi ; Sebacinales ; South America
    OECD categoryEcology
    R&D ProjectsGA18-05886S GA ČR - Czech Science Foundation (CSF)
    7AMB12AR014 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    7AMB14AR003 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Method of publishingLimited access
    Institutional supportBU-J - RVO:67985939 ; MBU-M - RVO:61388971
    UT WOS001079896200001
    EID SCOPUS85173918540
    DOI10.1007/s00572-023-01125-5
    AnnotationCore Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host x site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America). While we found typical ericoid mycorrhiza in all combinations, we did not detect ectomycorrhiza and arbuscular mycorrhiza. Superficial mantles of various thickness formed by non-clamped hyphae were observed in all combinations except Calluna vulgaris from N. Bohemia. Some samples contained frequent intercellular hyphae while others possessed previously unreported intracellular haustoria-like structures linked with intracellular hyphal coils. The 711 detected fungal OTU were dominated by Ascomycota (563) and Basidiomycota (119), followed by four other phyla. Ascomycetes comprised Helotiales (255), Pleosporales (53), Chaetothyriales (42), and other 19 orders, while basidiomycetes Sebacinales (42), Agaricales (28), Auriculariales (7), and other 14 orders. While many dominant OTU from both hemispheres lacked close relatives in reference databases, many were very similar to identical to unnamed sequences from around the world. On the other hand, several significant ericaceous mycobionts were absent in our dataset, incl. Cairneyella, Gamarada, Kurtia, Lachnum, and Leohumicola. Most of the detected OTU could not be reliably linked to a particular trophic mode, and only two could be reliably assigned to the archetypal ErMF Hyaloscypha hepaticicola. Probable ErMF comprised Hyaloscypha variabilis and Oidiodendron maius, both detected only in N. Bohemia. Possible ErMF comprised sebacinoid fungi and several unnamed members of Hyaloscypha s. str. While H. hepaticicola was dominant only in C. vulgaris, this model ErM host lacked O. maius and sebacinoid mycobionts. Hyaloscypha hepaticicola was absent in two and very rare in six combinations from Patagonia. Nine OTU represented dark septate endophytes from the Phialocephala fortinii s. lat.-Acephala applanata species complex, including the most abundant OTU (the only detected in all combinations). Statistical analyses revealed marked differences between N. Bohemia and Patagonia, but also within Patagonia, due to the unique community detected in a Valdivian temperate rainforest. Our results show that the ericaceous hair roots may host diverse mycobionts with mostly unknown functions and indicate that many novel ErMF lineages await discovery. Transhemispheric differences (thousands of km) in their communities may be evenly matched by local differences (scales of km, m, and less).
    WorkplaceInstitute of Botany
    ContactMartina Bartošová, martina.bartosova@ibot.cas.cz, ibot@ibot.cas.cz, Tel.: 271 015 242 ; Marie Jakšová, marie.jaksova@ibot.cas.cz, Tel.: 384 721 156-8
    Year of Publishing2024
    Electronic addresshttps://doi.org/10.1007/s00572-023-01125-5
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.