Number of the records: 1
The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency
- 1.
SYSNO ASEP 0577906 Document Type J - Journal Article R&D Document Type Journal Article Subsidiary J Článek ve WOS Title The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency Author(s) Majka, Maciej (UEB-Q) ORCID
Janáková, Eva (UEB-Q) ORCID
Jakobson, I. (EE)
Järve, K. (EE)
Cápal, Petr (UEB-Q) RID, ORCID
Korchanová, Zuzana (UEB-Q) ORCID
Lampar, Adam (UEB-Q) ORCID
Juračka, Jakub (UEB-Q) ORCID
Valárik, Miroslav (UEB-Q) RID, ORCIDNumber of authors 9 Source Title Journal of Advanced Research - ISSN 2090-1232
Roč. 53, Nov (2023), s. 75-85Number of pages 11 s. Language eng - English Country EG - Egypt Keywords Crossovers ; DNA methylation ; Hotspot ; Ph1 locus ; Recombination ; Wheat OECD category Biochemistry and molecular biology R&D Projects GA18-11688S GA ČR - Czech Science Foundation (CSF) QK1710302 GA MZe - Ministry of Agriculture (MZe) QK22010293 GA MZe - Ministry of Agriculture (MZe) EF16_019/0000827 GA MŠMT - Ministry of Education, Youth and Sports (MEYS) Method of publishing Open access Institutional support UEB-Q - RVO:61389030 UT WOS 001102834900001 EID SCOPUS 85146132437 DOI https://doi.org/10.1016/j.jare.2023.01.002 Annotation Introduction: Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. Objectives: This study aims to investigate a wheat recombination hotspot (H1) in comparison with a “regular” recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. Methods: The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. Results: The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. Conclusion: Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself. Workplace Institute of Experimental Botany Contact David Klier, knihovna@ueb.cas.cz, Tel.: 220 390 469 Year of Publishing 2024 Electronic address https://doi.org/10.1016/j.jare.2023.01.002
Number of the records: 1