Number of the records: 1  

Subunit-Dependent Surface Mobility and Localization of NMDA Receptors in Hippocampal Neurons Measured Using Nanobody Probes

  1. 1.
    SYSNO ASEP0574116
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleSubunit-Dependent Surface Mobility and Localization of NMDA Receptors in Hippocampal Neurons Measured Using Nanobody Probes
    Author(s) Kortus, Štěpán (UEM-P) RID
    Řeháková, Kristýna (UEM-P)
    Klíma, Martin (UOCHB-X) RID, ORCID
    Kolcheva, Marharyta (UEM-P) ORCID
    Ladislav, Marek (UEM-P) RID, ORCID
    Langore, Emily (UEM-P)
    Baráčková, Petra (UEM-P)
    Netolický, Jakub (UEM-P)
    Misiachna, Anna (UEM-P)
    Hemelíková, Katarína (UEM-P)
    Humpolíčková, Jana (UOCHB-X) ORCID
    Chalupská, Dominika (UOCHB-X) ORCID
    Šilhán, Jan (UOCHB-X) ORCID
    Kaniaková, Martina (UEM-P)
    Hrčka Krausová, Barbora (UEM-P) RID, ORCID
    Bouřa, Evžen (UOCHB-X) ORCID
    Zápotocký, Martin (FGU-C) RID, ORCID
    Horák, Martin (UEM-P) RID, ORCID
    Source TitleJournal of Neuroscience. - : Society for Neuroscience - ISSN 0270-6474
    Roč. 43, č. 26 (2023), s. 4755-4774
    Number of pages20 s.
    Languageeng - English
    CountryUS - United States
    KeywordsGluN subunit ; excitatory synapse ; glutamate receptor ; lateral diffusion ; live microscopy ; mammalian neuron
    OECD categoryNeurosciences (including psychophysiology
    R&D ProjectsGA20-12420S GA ČR - Czech Science Foundation (CSF)
    LX22NPO5107 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Research InfrastructureCzech-BioImaging III - 90250 - Ústav molekulární genetiky AV ČR, v. v. i.
    Czech-BioImaging II - 90129 - Ústav molekulární genetiky AV ČR, v. v. i.
    Method of publishingOpen access
    Institutional supportUEM-P - RVO:68378041 ; UOCHB-X - RVO:61388963 ; FGU-C - RVO:67985823
    UT WOS001033553700002
    EID SCOPUS85164063271
    DOI10.1523/JNEUROSCI.2014-22.2023
    AnnotationNMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively). Targeting the yellow fluorescent protein-tagged GluN1 subunit in rat hippocampal neurons, we compared these two probes to a previously established larger probe, a rabbit anti-GFP IgG together with a secondary IgG conjugated to QD605 (referred to as antiGFP-QD605). The nanoGFP-based probes allowed faster lateral diffusion of the NMDARs, with several-fold increased median values of the diffusion coefficient (D). Using thresholded tdTomato-Homer1c signals to mark synaptic regions, we found that the nanoprobe-based D values sharply increased at distances over 100 nm from the synaptic edge, while D values for antiGFP-QD605 probe remained unchanged up to a 400 nm distance. Using the nanoGFP-QD605 probe in hippocampal neurons expressing the GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits, we detected subunit-dependent differences in the synaptic localization of NMDARs, D value, synaptic residence time, and synaptic-extrasynaptic exchange rate. Finally, we confirmed the applicability of the nanoGFP-QD605 probe to study differences in the distribution of synaptic NMDARs by comparing to data obtained with nanoGFPs conjugated to organic fluorophores, using universal point accumulation imaging in nanoscale topography and direct stochastic optical reconstruction microscopy.SIGNIFICANCE STATEMENT Our study systematically compared the localization and mobility of surface NMDARs containing GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits expressed in rodent hippocampal neurons, using anti-green fluorescent protein (GFP) nanobodies conjugated to the quantum dot 605 (nanoGFP-QD605), as well as nanoGFP probes conjugated with small organic fluorophores. Our comprehensive analysis showed that the method used to delineate the synaptic region plays an important role in the study of synaptic and extrasynaptic pools of NMDARs. In addition, we showed that the nanoGFP-QD605 probe has optimal parameters for studying the mobility of NMDARs because of its high localization accuracy comparable to direct stochastic optical reconstruction microscopy and longer scan time compared with universal point accumulation imaging in nanoscale topography. The developed approaches are readily applicable to the study of any GFP-labeled membrane receptors expressed in mammalian neurons.
    WorkplaceInstitute of Experimental Medicine
    ContactLenka Koželská, lenka.kozelska@iem.cas.cz, Tel.: 241 062 218, 296 442 218
    Year of Publishing2024
    Electronic addresshttps://www.jneurosci.org/content/43/26/4755
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.