Number of the records: 1  

Text-to-Ontology Mapping via Natural Language Processing Models

  1. SYS0565960
    LBL
      
    01000a^^22220027750^450
    005
      
    20231122151042.3
    014
      
    $a 85139875540 $2 SCOPUS
    017
      
    $2 DOI
    100
      
    $a 20221227d m y slo 03 ba
    101
      
    $a eng
    102
      
    $a DE
    200
    1-
    $a Text-to-Ontology Mapping via Natural Language Processing Models
    215
      
    $a 7 s. $c E
    463
    -1
    $1 001 cav_un_epca*0565959 $1 011 $a 1613-0073 $1 200 1 $a Proceedings of the 22st Conference Information Technologies – Applications and Theory (ITAT 2022) $v S. 28-34 $1 210 $a Aachen $c Technical University & CreateSpace Independent Publishing $d 2022 $1 702 1 $a Ciencialová $b L. $4 340 $1 702 1 $a Holeňa $b M. $4 340 $1 702 1 $a Jajcay $b R. $4 340 $1 702 1 $a Jajcayová $b R. $4 340 $1 702 1 $a Mráz $b F. $4 340 $1 702 1 $a Pardubská $b D. $4 340 $1 702 1 $a Plátek $b M. $4 340
    610
      
    $a text analysis
    610
      
    $a language models
    610
      
    $a fastText
    610
      
    $a BERT
    610
      
    $a matching text to ontologies
    700
    -1
    $3 cav_un_auth*0441976 $a Yorsh $b U. $y CZ
    701
    -1
    $3 cav_un_auth*0441977 $a Behr $b A. S. $y DE
    701
    -1
    $3 cav_un_auth*0441978 $a Kockmann $b N. $y DE
    701
    -1
    $3 cav_un_auth*0100761 $a Holeňa $b Martin $p UIVT-O $i Oddělení strojového učení $j Department of Machine Learning $w Department of Machine Learning $T Ústav informatiky AV ČR, v. v. i.
    856
      
    $u https://ceur-ws.org/Vol-3226/paper3.pdf $9 RIV
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.