Number of the records: 1  

Discovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations

  1. 1.
    SYSNO ASEP0557061
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleDiscovery of Bispecific Lead Compounds from Azadirachta indica against ZIKA NS2B-NS3 Protease and NS5 RNA Dependent RNA Polymerase Using Molecular Simulations
    Author(s) Kumar, S. (IN)
    El-Kafrawy, S. (SA)
    Bharadwaj, Shiv (BTO-N)
    Maitra, S. (IN)
    Alandijany, T. (SA)
    Faizo, A. (SA)
    Khateb, A. (SA)
    Dwivedi, V. (SE)
    Azhar, E. (SA)
    Number of authors9
    Article number2562
    Source TitleMolecules. - : MDPI
    Roč. 27, č. 8 (2022)
    Number of pages25 s.
    Languageeng - English
    CountryCH - Switzerland
    KeywordsZika virus ; NS2B-NS3 protease ; NS5 RdRp ; therapeutics
    Subject RIVEB - Genetics ; Molecular Biology
    OECD categoryBiochemistry and molecular biology
    Method of publishingOpen access
    Institutional supportBTO-N - RVO:86652036
    UT WOS000786775600001
    EID SCOPUS85128801747
    DOI10.3390/molecules27082562
    AnnotationZika virus (ZIKV) has been characterized as one of many potential pathogens and placed under future epidemic outbreaks by the WHO. However, a lack of potential therapeutics can result in an uncontrolled pandemic as with other human pandemic viruses. Therefore, prioritized effective therapeutics development has been recommended against ZIKV. In this context, the present study adopted a strategy to explore the lead compounds from Azadirachta indica against ZIKV via concurrent inhibition of the NS2B-NS3 protease (ZIKV(pro)) and NS5 RNA dependent RNA polymerase (ZIKV(RdRp)) proteins using molecular simulations. Initially, structure-based virtual screening of 44 bioflavonoids reported in Azadirachta indica against the crystal structures of targeted ZIKV proteins resulted in the identification of the top four common bioflavonoids, viz. Rutin, Nicotiflorin, Isoquercitrin, and Hyperoside. These compounds showed substantial docking energy (-7.9 to11.01 kcal/mol) and intermolecular interactions with essential residues of ZIKV(pro) (B:His(51), B:Asp(75), and B:Ser(135)) and ZIKV(RdRp) (Asp(540), Ile(799), and Asp(665)) by comparison to the reference compounds, O7N inhibitor (ZIKV(pro)) and Sofosbuvir inhibitor (ZIKV(RdRp)). Besides, long interval molecular dynamics simulation (500 ns) on the selected docked poses reveals stability of the respective docked poses contributed by intermolecular hydrogen bonds and hydrophobic interactions. The predicted complex stability was further supported by calculated end-point binding free energy using molecular mechanics generalized born surface area (MM/GBSA) method. Consequently, the identified common bioflavonoids are recommended as promising therapeutic inhibitors of ZIKV(pro) and ZIKV(RdRp) against ZIKV for further experimental assessment.
    WorkplaceInstitute of Biotechnology
    ContactMonika Kopřivová, Monika.Koprivova@ibt.cas.cz, Tel.: 325 873 700
    Year of Publishing2023
    Electronic addresshttps://www.mdpi.com/1420-3049/27/8/2562
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.