Number of the records: 1
Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation
SYS 0518308 LBL 01000a^^22220027750^450 005 20241106135803.0 014 $a 85093097685 $2 SCOPUS 014 $a 000587699700017 $2 WOS 017 $a 10.1109/TNNLS.2019.2956926 $2 DOI 100 $a 20191219d m y slo 03 ba 101 $a eng $d eng 102 $a US 200 1-
$a Tensor Networks for Latent Variable Analysis: Novel Algorithms for Tensor Train Approximation 215 $a 17 s. $c P 300 $a doplnit Plny text 463 -1
$1 001 cav_un_epca*0382474 $1 011 $a 2162-237X $e 2162-2388 $1 200 1 $a IEEE Transactions on Neural Networks and Learning Systems $v Roč. 31, č. 11 (2020), s. 4622-4636 610 $a Blind source separation 610 $a tensor network (TN) 610 $a image denoising 610 $a nested Tucker 610 $a tensor train (TT) decomposition 610 $a Tucker-2 (TK2) decomposition 610 $a truncated singular value decomposition (SVD) 700 -1
$3 cav_un_auth*0382249 $a Phan $b A. H. $y RU 701 -1
$3 cav_un_auth*0382250 $a Cichocki $b A. $y RU 701 -1
$3 cav_un_auth*0385705 $a Uschmajew $b A. $y DE 701 -1
$3 cav_un_auth*0101212 $a Tichavský $b Petr $p UTIA-B $i Stochastická informatika $j Department of Stochastic Informatics $k SI $l SI $w Department of Stochastic Informatics $T Ústav teorie informace a automatizace AV ČR, v. v. i. 701 -1
$3 cav_un_auth*0291813 $a Luta $b G. $y US 856 $u http://library.utia.cas.cz/separaty/2020/SI/tichavsky-0518308.pdf 856 $u https://ieeexplore.ieee.org/document/8984730 $9 RIV
Number of the records: 1
