- Extraordinary Biomass-Burning Episode and Impact Winter Triggered by …
Number of the records: 1  

Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact approximate to 12,800 Years Ago. 1. Ice Cores and Glaciers

  1. 1.
    SYSNO ASEP0488673
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleExtraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact approximate to 12,800 Years Ago. 1. Ice Cores and Glaciers
    Author(s) Wolbach, W. S. (US)
    Ballard, J. P. (US)
    Mayewski, P. A. (US)
    Adedeji, V. (US)
    Bunch, T. E. (US)
    Firestone, R. B. (US)
    French, T. A. (US)
    Howard, G. A. (US)
    Israde-Alcántara, I. (MX)
    Johnson, J. R. (US)
    Kimbel, D. R. (US)
    Kinzie, Ch. R. (US)
    Kurbatov, A. (US)
    Kletetschka, Günther (GLU-S) RID, SAI, ORCID
    LeCompte, M. A. (US)
    Mahaney, W. C. (CA)
    Mellot, A. L. (US)
    Maiorana-Boutilier, A. (US)
    Mitra, S. (US)
    Moore, Ch. R. (US)
    Napier, W. M. (GB)
    Parlier, J. (US)
    Tankersley, K. B. (US)
    Thomas, B. C. (US)
    Wittke, J. H. (US)
    West, A. (US)
    Kennett, J. P. (US)
    Source TitleJournal of Geology. - : University of Chicago Press - ISSN 0022-1376
    Roč. 126, č. 2 (2018), s. 165-184
    Number of pages20 s.
    Publication formPrint - P
    Languageeng - English
    CountryUS - United States
    Keywordsbiomass burning ; comet ; deposition ; ice core ; impact ; mass extinction ; paleoclimate ; paleoenvironment ; platinum ; trigger mechanism ; wildfire ; winter ; Younger Dryas
    Subject RIVDB - Geology ; Mineralogy
    OECD categoryGeology
    Institutional supportGLU-S - RVO:67985831
    UT WOS000425530500002
    EID SCOPUS85042306672
    DOI https://doi.org/10.1086/695703
    AnnotationThe Younger Dryas boundary (YDB) cosmic-impact hypothesis is based on considerable evidence that Earth collided with fragments of a disintegrating 100-km-diameter comet, the remnants of which persist within the inner solar system approximate to 12,800 y later. Evidence suggests that the YDB cosmic impact triggered an impact winter and the subsequent Younger Dryas (YD) climate episode, biomass burning, late Pleistocene megafaunal extinctions, and human cultural shifts and population declines. The cosmic impact deposited anomalously high concentrations of platinum over much of the Northern Hemisphere, as recorded at 26 YDB sites at the YD onset, including the Greenland Ice Sheet Project 2 ice core, in which platinum deposition spans approximate to 21 y (approximate to 12,836-12,815 cal BP). The YD onset also exhibits increased dust concentrations, synchronous with the onset of a remarkably high peak in ammonium, a biomass-burning aerosol. In four ice-core sequences from Greenland, Antarctica, and Russia, similar anomalous peaks in other combustion aerosols occur, including nitrate, oxalate, acetate, and formate, reflecting one of the largest biomass-burning episodes in more than 120,000 y. In support of widespread wildfires, the perturbations in CO2 records from Taylor Glacier, Antarctica, suggest that biomass burning at the YD onset may have consumed approximate to 10 million km(2), or approximate to 9% of Earth's terrestrial biomass. The ice record is consistent with YDB impact theory that extensive impact-related biomass burning triggered the abrupt onset of an impact winter, which led, through climatic feedbacks, to the anomalous YD climate episode.
    WorkplaceInstitute of Geology
    ContactJana Popelková, popelkova@gli.cas.cz, Tel.: 226 800 273
    Year of Publishing2019
Number of the records: 1  

Metadata are licenced under CC0

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.