- Recursive Clustering Hematological Data Using Mixture of Exponential …
Number of the records: 1  

Recursive Clustering Hematological Data Using Mixture of Exponential Components

  1. 1.
    SYSNO ASEP0482566
    Document TypeC - Proceedings Paper (int. conf.)
    R&D Document TypeConference Paper
    TitleRecursive Clustering Hematological Data Using Mixture of Exponential Components
    Author(s) Suzdaleva, Evgenia (UTIA-B) RID, ORCID
    Nagy, Ivan (UTIA-B) RID, ORCID
    Petrouš, Matej (UTIA-B)
    Number of authors3
    Source TitleProceedings of International Conference on Intelligent Informatics and BioMedical Sciences ICIIBMS 2017. - Piscataway : IEEE, 2017 - ISBN 978-1-5090-6665-0
    Pagess. 63-70
    Number of pages8 s.
    Publication formPrint - P
    ActionInternational Conference on Intelligent Informatics and BioMedical Sciences ICIIBMS 2017
    Event date24.11.2017 - 26.11.2017
    VEvent locationOkinawa
    CountryJP - Japan
    Event typeWRD
    Languageeng - English
    CountryJP - Japan
    Keywordsmixture-based clustering ; recursive mixture estimation ; exponential components
    Subject RIVBB - Applied Statistics, Operational Research
    OECD categoryStatistics and probability
    R&D ProjectsGA15-03564S GA ČR - Czech Science Foundation (CSF)
    Institutional supportUTIA-B - RVO:67985556
    UT WOS000426897300015
    EID SCOPUS85047411746
    DOI https://doi.org/10.1109/ICIIBMS.2017.8279700
    AnnotationThe paper deals with the mixture-based clustering of anonymized data of patients with leukemia. The presented clustering algorithm is based on the recursive Bayesian mixture estimation for the case of exponential components and the data-dependent dynamic pointer model. The main contribution of the paper is the online performance of clustering, which allows us to actualize the statistics of components and the pointer model with each new measurement. Results of the application of the algorithm to the clustering of hematological data are demonstrated and compared with theoretical counterparts.
    WorkplaceInstitute of Information Theory and Automation
    ContactMarkéta Votavová, votavova@utia.cas.cz, Tel.: 266 052 201.
    Year of Publishing2018
Number of the records: 1  

Metadata are licenced under CC0

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.