Number of the records: 1  

A new hierarchy of infinitary logics in abstract algebraic logic

  1. 1.
    SYSNO ASEP0469118
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleA new hierarchy of infinitary logics in abstract algebraic logic
    Author(s) Lávička, Tomáš (UIVT-O)
    Noguera, Carles (UTIA-B) RID, ORCID
    Source TitleStudia Logica. - : Springer - ISSN 0039-3215
    Roč. 105, č. 3 (2017), s. 521-551
    Number of pages31 s.
    Publication formPrint - P
    Languageeng - English
    CountryNL - Netherlands
    KeywordsAbstract algebraic logic ; consequence relations ; infinitary logics ; completeness properties
    Subject RIVBA - General Mathematics
    OECD categoryPure mathematics
    Subject RIV - cooperationInstitute of Computer Science - General Mathematics
    R&D ProjectsGA13-14654S GA ČR - Czech Science Foundation (CSF)
    Institutional supportUTIA-B - RVO:67985556 ; UIVT-O - RVO:67985807
    UT WOS000401436800004
    EID SCOPUS85007165633
    DOI https://doi.org/10.1007/s11225-016-9699-3
    AnnotationIn this article we investigate infinitary propositional logics from the perspective of their completeness properties in abstract algebraic logic. It is well-known that every finitary logic is complete with respect to its relatively (finitely) subdirectly irreducible models. We identify two syntactical notions formulated in terms of (completely) intersection-prime theories that follow from finitarity and are sufficient conditions for the aforementioned completeness properties. We construct all the necessary counterexamples to show that all these properties define pairwise different classes of logics. Consequently, we obtain a new hierarchy of logics going beyond the scope of finitarity.
    WorkplaceInstitute of Information Theory and Automation
    ContactMarkéta Votavová, votavova@utia.cas.cz, Tel.: 266 052 201.
    Year of Publishing2018
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.