Number of the records: 1  

Oligomeric interface modulation causes misregulation of purine 5'-nucleotidase in relapsed leukemia

  1. 1.
    0466505 - ÚOCHB 2017 RIV GB eng J - Journal Article
    Hnízda, Aleš - Škerlová, Jana - Fábry, Milan - Pachl, Petr - Šinalová, Martina - Vrzal, Lukáš - Man, Petr - Novák, Petr - Řezáčová, Pavlína - Veverka, Václav
    Oligomeric interface modulation causes misregulation of purine 5'-nucleotidase in relapsed leukemia.
    BMC BIOLOGY. Roč. 14, Oct 19 (2016), č. článku 91. E-ISSN 1741-7007
    R&D Projects: GA ČR GA15-06582S; GA MŠMT(CZ) LK11205; GA MŠMT(CZ) LO1304; GA MŠMT LO1302; GA MŠMT(CZ) LD15089; GA MŠMT(CZ) ED1.1.00/02.0109
    Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:61388971
    Keywords : nucleotidase * cancer mutations * relapsed ALL * purine metabolism * allosteric regulation
    Subject RIV: CE - Biochemistry; EE - Microbiology, Virology (MBU-M)
    Impact factor: 6.779, year: 2016
    http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0313-y

    Relapsed acute lymphoblastic leukemia (ALL) is one of the main causes of mortality in childhood malignancies. Previous genetic studies demonstrated that chemoresistant ALL is driven by activating mutations in NT5C2, the gene encoding cytosolic 5'-nucleotidase (cN-II). However, molecular mechanisms underlying this hyperactivation are still unknown. Here, we present kinetic and structural properties of cN-II variants that represent 75 % of mutated alleles in patients who experience relapsed ALL (R367Q, R238W and L375F). Enzyme kinetics measurements revealed that the mutants are consitutively active without need for allosteric activators. This shows that hyperactivity is not caused by a direct catalytic effect but rather by misregulation of cN-II. X-ray crystallography combined with mass spectrometry-based techniques demonstrated that this misregulation is driven by structural modulation of the oligomeric interface within the cN-II homotetrameric assembly. These specific conformational changes are shared between the studied variants, despite the relatively random spatial distribution of the mutations. These findings define a common molecular mechanism for cN-II hyperactivity, which provides a solid basis for targeted therapy of leukemia. Our study highlights the cN-II oligomerization interface as an attractive pharmacological target.
    Permanent Link: http://hdl.handle.net/11104/0264791

     
    FileDownloadSizeCommentaryVersionAccess
    0466505.pdf33.8 MBPublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.