Number of the records: 1  

MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration

  1. 1.
    SYSNO ASEP0392564
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleMP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration
    Author(s) Sedlák, Robert (UOCHB-X) RID
    Riley, K. E. (US)
    Řezáč, Jan (UOCHB-X) RID, ORCID
    Pitoňák, M. (SK)
    Hobza, Pavel (UOCHB-X) RID, ORCID
    Number of authors5
    Source TitleChemPhysChem. - : Wiley - ISSN 1439-4235
    Roč. 14, č. 4 (2013), s. 698-707
    Number of pages10 s.
    Languageeng - English
    CountryDE - Germany
    Keywordsbenchmark dataset ; complete basis set limit ; correlation energy ; MOllerPlesset perturbation theory ; noncovalent interactions
    Subject RIVCF - Physical ; Theoretical Chemistry
    R&D ProjectsGBP208/12/G016 GA ČR - Czech Science Foundation (CSF)
    Institutional supportUOCHB-X - RVO:61388963
    UT WOS000316212800007
    EID SCOPUS84875198575
    DOI10.1002/cphc.201200850
    AnnotationThe performance of the second-order MOllerPlesset perturbation theory MP2.5 and MP2.X methods, tested on the S22, S66, X40, and other benchmark datasets is briefly reviewed. It is found that both methods produce highly accurate binding energies for the complexes contained in these data sets. Both methods also provide reliable potential energy curves for the complexes in the S66 set. Among the routinely used wavefunction methods, the only other technique that consistently produces lower errors, both for stabilization energies and geometry scans, is the spin-component-scaled coupled-clusters method covering iterative single- and double-electron excitations, which is, however, substantially more computationally intensive. The structures originated from full geometrical gradient optimizations at the MP2.5 and MP2.X level of theory were confirmed to be the closest to the CCSD(T)/CBS (coupled clusters covering iterative single- and double-electron excitations and perturbative triple-electron excitations performed at the complete basis set limit) geometries among all the tested methods (e.g. MP3, SCS(MI)-MP2, MP2, M06-2X, and DFT-D method evaluated with the TPSS functional). The MP2.5 geometries for the tested complexes deviate from the references almost negligibly. Inclusion of the scaled third-order correlation energy results in a substantial improvement of the ability to accurately describe noncovalent interactions. The results shown here serve to support the notion that MP2.5 and MP2.X are reasonable alternative methods for benchmark calculations in cases where system size or (lack of) computational resources preclude the use of CCSD(T)/CBS computations. MP2.X allows for the use of smaller basis sets (i.e. 6-31G*) with results that are nearly identical to those of MP2.5 with larger basis sets, which dramatically decreases computation times and makes calculations on much larger systems possible.
    WorkplaceInstitute of Organic Chemistry and Biochemistry
    Contactasep@uochb.cas.cz ; Kateřina Šperková, Tel.: 232 002 584 ; Jana Procházková, Tel.: 220 183 418
    Year of Publishing2014
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.