Number of the records: 1
An Epigenetic Model for Pigment Patterning Based on Mechanical and Cellular Interactions
- 1.
SYSNO ASEP 0385246 Document Type J - Journal Article R&D Document Type Journal Article Subsidiary J Článek ve WOS Title An Epigenetic Model for Pigment Patterning Based on Mechanical and Cellular Interactions Author(s) Caballero, L. (CZ)
Benitez, M. (CZ)
Alvarez-Buylla, E. R. (MX)
Hernandez, S. (MX)
Arzola, Alejandro V. (UPT-D) RID, SAI
Cocho, G. (MX)Number of authors 6 Source Title Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Additional Title Information. - : Wiley - ISSN 1552-5007
Roč. 318, č. 3 (2012), s. 209-223Number of pages 15 s. Language eng - English Country US - United States Keywords epithelial-mesenchymal transitions ; neural crest ; traction forces ; morphogenesis Subject RIV ED - Physiology Institutional support UPT-D - RVO:68081731 UT WOS 000303313800007 DOI https://doi.org/10.1002/jez.b.22007 Annotation Pigment patterning in animals generally occurs during early developmental stages and has ecological, physiological, ethological, and evolutionary significance. Despite the relative simplicity of color patterns, their emergence depends upon multilevel complex processes. Thus, theoretical models have become necessary tools to further understand how such patterns emerge. Recent studies have reevaluated the importance of epigenetic, as well as genetic factors in developmental pattern formation. Yet epigenetic phenomena, specially those related to physical constraints that might be involved in the emergence of color patterns, have not been fully studied. In this article, we propose a model of color patterning in which epigenetic aspects such as cell migration, celltissue interactions, and physical and mechanical phenomena are central. This model considers that motile cells embedded in a fibrous, viscoelastic matrixmesenchymecan deform it in such a way that tension tracks are formed. We postulate that these tracks act, in turn, as guides for subsequent cell migration and establishment, generating long-range phenomenological interactions. We aim to describe some general aspects of this developmental phenomenon with a rather simple mathematical model. Then we discuss our model in the context of available experimental and morphological evidence for reptiles, amphibians, and fishes, and compare it with other patterning models. We also put forward novel testable predictions derived from our model, regarding, for instance, the localization of the postulated tension tracks, and we propose new experiments. Finally, we discuss how the proposed mechanism could constitute a dynamic patterning module accounting for pattern formation in many animal lineages. Workplace Institute of Scientific Instruments Contact Martina Šillerová, sillerova@ISIBrno.Cz, Tel.: 541 514 178 Year of Publishing 2013
Number of the records: 1