Number of the records: 1  

Nonequilibrium transport through molecular junctions in the quantum regime

  1. 1.
    SYSNO ASEP0365033
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleNonequilibrium transport through molecular junctions in the quantum regime
    Author(s) Koch, T. (DE)
    Loos, Jan (FZU-D) RID
    Alvermann, A. (GB)
    Fehske, H. (DE)
    Source TitlePhysical Review. B - ISSN 1098-0121
    Roč. 84, č. 12 (2011), 125131/1-125131/16
    Number of pages16 s.
    Languageeng - English
    CountryUS - United States
    Keywordstheory of electronic transport ; scattering mechanisms ; polarons and electron-phonon interactions ; quantum dots
    Subject RIVBM - Solid Matter Physics ; Magnetism
    CEZAV0Z10100521 - FZU-D (2005-2011)
    UT WOS000298991300001
    DOI10.1103/PhysRevB.84.125131
    AnnotationWe consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in the nonequilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the equations of motion of the Green functions in the Kadanoff-Baym formalism up to a second order in the interaction coefficients. The variational determination of the transformation parameter through minimization of the thermodynamic potential allows us to calculate the electron/polaron spectral function and conductance for adiabatic to antiadiabatic phonon frequencies and weak to strong electron-phonon couplings. We investigate the qualitative impact of the quasiparticle renormalization on the inelastic electron tunneling spectroscopy signatures and discuss the possibility of a polaron induced negative differential conductance. In the high-voltage regime,we find that the polaron level follows the lead chemical potential to enhance resonant transport.
    WorkplaceInstitute of Physics
    ContactKristina Potocká, potocka@fzu.cz, Tel.: 220 318 579
    Year of Publishing2012
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.