Number of the records: 1  

Laser-driven acceleration of protons from hydrogenated annealed silicon targets

  1. 1.
    SYSNO ASEP0353134
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleLaser-driven acceleration of protons from hydrogenated annealed silicon targets
    Author(s) Picciotto, A. (IT)
    Margarone, Daniele (FZU-D) RID, ORCID
    Krása, Josef (FZU-D) RID, ORCID
    Velyhan, Andriy (FZU-D) RID, ORCID
    Serra, E. (IT)
    Bellutti, P. (IT)
    Scarduelli, G. (IT)
    Calliari, L. (IT)
    Krouský, Eduard (FZU-D) RID
    Rus, Bedřich (FZU-D) ORCID
    Dapor, M. (IT)
    Source TitleEPL : Europhysics Letters. - : Institute of Physics Publishing - ISSN 0295-5075
    Roč. 92, č. 3 (2010), 34008/1-34008/5
    Number of pages5 s.
    Languageeng - English
    CountryFR - France
    Keywordslaser-driven acceleration ; laser ablation ; plasma-material interactions ; boundary layer effects
    Subject RIVBH - Optics, Masers, Lasers
    R&D ProjectsLC528 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    CEZAV0Z10100523 - FZU-D (2005-2011)
    UT WOS000284996700018
    DOI10.1209/0295-5075/92/34008
    AnnotationThis paper provides the first demonstration that an hydrogenated annealed crystalline silicon may be used as a source of protons in laser-driven acceleration experiments. We analyze and compare the proton production from two silicon targets excited by a sub-nanosecond laser. One target (treated) was hydrogenated and annealed, while the other (untreated) did not undergo these procedures. The experimental results show that for the treated target, the number of generated protons is ~1.4×10^15 sr−1 while for the other it is ~3.6×10^13 sr−1. Their maximum energy is about 2MeV with a laser intensity three order of magnitude lower than in previous experiments.
    WorkplaceInstitute of Physics
    ContactKristina Potocká, potocka@fzu.cz, Tel.: 220 318 579
    Year of Publishing2011
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.