= 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0))."> = 0 and w(x)x](1/q) approximate to [v(x)x](1/p) for all x is an element of (0, +infinity), We prove that if the averaging operator (Af)(x) = 1/x integral(x)(0) f(t)dt, x is an element of (0, +infinity), is bounded from the weighted Lebesgue space L-p(0, +infinity), v) into the weighted Lebesgue space L-q((0, +infinity); w), then there exists epsilon(0) is an element of (0, p - 1) such that the space Lq-epsilon q/p((0, +infinity), w(x)(1+delta)x(delta(1-q/p))x(gamma q/p)) for all epsilon, delta, gamma is an element of [0, epsilon(0))."> Weighted estimates for the averaging integral operator
Number of the records: 1  

Weighted estimates for the averaging integral operator

  1. 1.
    OPIC, B., RÁKOSNÍK, J. Weighted estimates for the averaging integral operator. Collectanea Mathematica. 2010, 61(3), 253-262. ISSN 0010-0757. E-ISSN 2038-4815. Available: doi: 10.1007/BF03191231.
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.