- Semi-Normal Forms and Functional Representation of Product Fuzzy Logic
Number of the records: 1  

Semi-Normal Forms and Functional Representation of Product Fuzzy Logic

  1. 1.
    SYSNO ASEP0103264
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleSemi-Normal Forms and Functional Representation of Product Fuzzy Logic
    TitleSemi-normální formy a funkční reprezentace produktové fuzzy logiky
    Author(s) Cintula, Petr (UIVT-O) RID, ORCID, SAI
    Gerla, B. (IT)
    Source TitleFuzzy Sets and Systems. - : Elsevier - ISSN 0165-0114
    Roč. 143, č. 1 (2004), s. 89-110
    Number of pages23 s.
    Languageeng - English
    CountryNL - Netherlands
    Keywordsfuzzy logic ; product logic ; functional representation ; normal forms
    Subject RIVBA - General Mathematics
    R&D ProjectsIAA1030004 GA AV ČR - Academy of Sciences of the Czech Republic (AV ČR)
    CEZAV0Z1030915 - UIVT-O
    UT WOS000220243300007
    EID SCOPUS1342285537
    DOI https://doi.org/10.1016/j.fss.2003.06.001
    AnnotationBy McNaughton theorem, the class of functions representable by formulas of Lukasiewicz logic is the class of piecewise linear functions with integer coefficients. The first goal of this work to find an analogy of the McNaughton result for product logic. The second goal is to define a Conjunctive (Disjunctive) semi-normal form of the formulas of product logic. These results show us how the functions expressible by the formulas of product logic look like.
    WorkplaceInstitute of Computer Science
    ContactTereza Šírová, sirova@cs.cas.cz, Tel.: 266 053 800
    Year of Publishing2005
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.