Number of the records: 1  

Semi-Normal Forms and Functional Representation of Product Fuzzy Logic

  1. 1.
    0103264 - UIVT-O 20040005 RIV NL eng J - Journal Article
    Cintula, Petr - Gerla, B.
    Semi-Normal Forms and Functional Representation of Product Fuzzy Logic.
    [Semi-normální formy a funkční reprezentace produktové fuzzy logiky.]
    Fuzzy Sets and Systems. Roč. 143, č. 1 (2004), s. 89-110. ISSN 0165-0114. E-ISSN 1872-6801
    R&D Projects: GA AV ČR IAA1030004
    Institutional research plan: CEZ:AV0Z1030915
    Keywords : fuzzy logic * product logic * functional representation * normal forms
    Subject RIV: BA - General Mathematics
    Impact factor: 0.734, year: 2004
    DOI: https://doi.org/10.1016/j.fss.2003.06.001

    By McNaughton theorem, the class of functions representable by formulas of Lukasiewicz logic is the class of piecewise linear functions with integer coefficients. The first goal of this work to find an analogy of the McNaughton result for product logic. The second goal is to define a Conjunctive (Disjunctive) semi-normal form of the formulas of product logic. These results show us how the functions expressible by the formulas of product logic look like.

    Slavný McNaughtonův teorém charakterizuje reálné funkce vyjádřitelné pomocí formulí Lukasiewiczovy fuzzy logiky. V tomto článku dokážeme analogický výsledek pro Produktovou fuzzy logiky. K elegantnímu důkazu našeho charakterizačního teorému použijeme pojmu Konjunktivní (Disjunktivní) normální formy formulí Produktové fuzzy logiky.
    Permanent Link: http://hdl.handle.net/11104/0010576


     
     
    FileDownloadSizeCommentaryVersionAccess
    0103264.pdf1720.5 KBAuthor´s preprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.