Number of the records: 1
Semi-Normal Forms and Functional Representation of Product Fuzzy Logic
- 1.0103264 - UIVT-O 20040005 RIV NL eng J - Journal Article
Cintula, Petr - Gerla, B.
Semi-Normal Forms and Functional Representation of Product Fuzzy Logic.
[Semi-normální formy a funkční reprezentace produktové fuzzy logiky.]
Fuzzy Sets and Systems. Roč. 143, č. 1 (2004), s. 89-110. ISSN 0165-0114. E-ISSN 1872-6801
R&D Projects: GA AV ČR IAA1030004
Institutional research plan: CEZ:AV0Z1030915
Keywords : fuzzy logic * product logic * functional representation * normal forms
Subject RIV: BA - General Mathematics
Impact factor: 0.734, year: 2004
DOI: https://doi.org/10.1016/j.fss.2003.06.001
By McNaughton theorem, the class of functions representable by formulas of Lukasiewicz logic is the class of piecewise linear functions with integer coefficients. The first goal of this work to find an analogy of the McNaughton result for product logic. The second goal is to define a Conjunctive (Disjunctive) semi-normal form of the formulas of product logic. These results show us how the functions expressible by the formulas of product logic look like.
Slavný McNaughtonův teorém charakterizuje reálné funkce vyjádřitelné pomocí formulí Lukasiewiczovy fuzzy logiky. V tomto článku dokážeme analogický výsledek pro Produktovou fuzzy logiky. K elegantnímu důkazu našeho charakterizačního teorému použijeme pojmu Konjunktivní (Disjunktivní) normální formy formulí Produktové fuzzy logiky.
Permanent Link: http://hdl.handle.net/11104/0010576
File Download Size Commentary Version Access 0103264.pdf 1 720.5 KB Author´s preprint open-access
Number of the records: 1