Number of the records: 1  

Magnetic layers with periodic point perturbations

  1. 1.
    0101853 - UJF-V 20043036 RIV GB eng J - Journal Article
    Exner, Pavel - Němcová, Kateřina
    Magnetic layers with periodic point perturbations.
    [Magnetické vrstvy s periodickými bodovými reakcemi.]
    Reports on Mathematical Physics. Roč. 52, č. 2 (2003), s. 255-280. ISSN 0034-4877. E-ISSN 1879-0674
    R&D Projects: GA AV ČR IAA1048101
    Institutional research plan: CEZ:AV0Z1048901
    Keywords : Schrodinger operator with magnetic field * Dirichlet layer
    Subject RIV: BE - Theoretical Physics
    Impact factor: 0.489, year: 2003

    We study spectral properties of a spinless quantum particle confined to an infinite planar layer with hard walls, which interacts with a periodic lattice of point perturbations and a homogeneous magnetic field perpendicular to the layer. It is supposed that the lattice cell contains a finite number of impurities and the flux through the cell is rational. Using the Landau-Zak transformation, we convert the problem into investigation of the corresponding fiber operators which is performed by means of Krein's formula. This yields an explicit description of the spectral bands, which may be absolutely continuous or degenerate, depending on the parameters of the model

    Jsou studovány spektrální vlastnosti bezspinové kvantové částice, uvězněné v nekonečné rovinné vrstvě s neprostupnými stěnami, interagující s periodickou mřížkou bodových interakcí a homogenním magnetickým polem kolmým na vrstvu.
    Permanent Link: http://hdl.handle.net/11104/0009243
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.