Number of the records: 1  

Ultrasensitive impedimetric imunosensor for influenza A detection

  1. 1.
    0522229 - ÚFCH JH 2021 RIV CH eng J - Journal Article
    Dunajová, A. A. - Gál, M. - Tomčíková, K. - Sokolová, Romana - Kolivoška, Viliam - Vaněčková, Eva - Kielar, F. - Kostolanský, F. - Varečková, E. - Naumowicz, M.
    Ultrasensitive impedimetric imunosensor for influenza A detection.
    Journal of Electroanalytical Chemistry. Roč. 858, FEB 2020 (2020), č. článku 113813. ISSN 1572-6657. E-ISSN 1873-2569
    Institutional support: RVO:61388955
    Keywords : Antibodies * Electrochemical impedance spectroscopy * Human serum albumin * Imunosensor * Influenza
    OECD category: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
    Impact factor: 4.464, year: 2020
    Method of publishing: Limited access

    Acute respiratory infections epidemics are yearly caused by influenza A viruses due to their high variability. The course of disease can be sometimes very severe, especially in high risk groups of patients (suffering by chronical disease, immunosupression, or patients of age over 65). The World Health Organization (WHO) estimates that annually 250–500 thousand human deaths are caused globally by the influenza viral infections. To prevent the epidemic/pandemic spread of influenza infections, careful monitoring of epidemic viruses circulating in human population is required with the aim to prepare the effective influenza vaccine. This requires an early and very sensitive diagnostics. Therefore new, rapid diagnostic methods of high sensitivity and clinical specificity are continually developed. The goal of this work was to create an ultra-sensitive and highly selective impedimetric imunobiosensor for the detection of influenza A viruses based on the interaction with monoclonal antibodies, using disposable, easy to use screen printed carbon electrodes. Electrochemical impedance spectroscopy was used to characterize the sensors and describe their basic properties. Limit of detection (LOD) and the sensitivity of the sensor from the dependence of the absolute changes of charge transfer resistance, ∆Rct of redox probe on the logarithm of the virus protein concentration with or without modification of the electrode surface by human serum albumin (HSA) in buffered solution and horse blood were calculated. The lowest sensitivity was observed in the case of the sensor without HSA. LOD was the best in the case of the sensor without HSA in the buffered solution. In the horse blood samples LOD was almost 1000 times worse than in the previous case, however it was still good enough to be comparable with an ELISA based test.
    Permanent Link: http://hdl.handle.net/11104/0306753

     
    FileDownloadSizeCommentaryVersionAccess
    0522229.pdf1654.1 KBPublisher’s postprintrequire
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.