Number of the records: 1  

Cross-Frequency Slow Oscillation–Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model

  1. 1.
    0557318 - ÚI 2023 RIV CH eng J - Journal Article
    Jajcay, Nikola - Cakan, C. - Obermayer, K.
    Cross-Frequency Slow Oscillation–Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model.
    Frontiers in Computational Neuroscience. Roč. 16, May 2022 (2022), č. článku 769860. E-ISSN 1662-5188
    R&D Projects: GA MŠMT(CZ) EF19_074/0016209; GA ČR(CZ) GA21-32608S
    Institutional support: RVO:67985807
    Keywords : neural mass model * thalamocortical loop * sleep spindles * slow oscillations * cross-frequency coupling
    OECD category: Neurosciences (including psychophysiology
    Impact factor: 3.2, year: 2022
    Method of publishing: Open access
    http://dx.doi.org/10.3389/fncom.2022.769860

    Sleep manifests itself by the spontaneous emergence of characteristic oscillatory rhythms, which often time-lock and are implicated in memory formation. Here, we analyze a neural mass model of the thalamocortical loop in which the cortical node can generate slow oscillations (approximately 1 Hz) while its thalamic component can generate fast sleep spindles of σ-band activity (12–15 Hz). We study the dynamics for different coupling strengths between the thalamic and cortical nodes, for different conductance values of the thalamic node's potassium leak and hyperpolarization-activated cation-nonselective currents, and for different parameter regimes of the cortical node. The latter are listed as follows: (1) a low activity (DOWN) state with noise-induced, transient excursions into a high activity (UP) state, (2) an adaptation induced slow oscillation limit cycle with alternating UP and DOWN states, and (3) a high activity (UP) state with noise-induced, transient excursions into the low activity (DOWN) state. During UP states, thalamic spindling is abolished or reduced. During DOWN states, the thalamic node generates sleep spindles, which in turn can cause DOWN to UP transitions in the cortical node. Consequently, this leads to spindle-induced UP state transitions in parameter regime (1), thalamic spindles induced in some but not all DOWN states in regime (2), and thalamic spindles following UP to DOWN transitions in regime (3). The spindle-induced σ-band activity in the cortical node, however, is typically the strongest during the UP state, which follows a DOWN state “window of opportunity” for spindling. When the cortical node is parametrized in regime (3), the model well explains the interactions between slow oscillations and sleep spindles observed experimentally during Non-Rapid Eye Movement sleep. The model is computationally efficient and can be integrated into large-scale modeling frameworks to study spatial aspects like sleep wave propagation.
    Permanent Link: http://hdl.handle.net/11104/0331355

     
    FileDownloadSizeCommentaryVersionAccess
    0557318-aoa.pdf45 MBOA CC BY 4.0Publisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.