Number of the records: 1  

The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents

  1. 1.
    SYSNO ASEP0548810
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleThe Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents
    Author(s) Urban, M. O. (CZ)
    Planchon, S. (LU)
    Hoštičková, I. (CZ)
    Vaňková, Radomíra (UEB-Q) RID, ORCID
    Dobrev, Petre (UEB-Q) RID, ORCID
    Renaut, J. (LU)
    Klíma, M. (CZ)
    Vítámvás, P. (CZ)
    Number of authors8
    Article number628167
    Source TitleFrontiers in Plant Science. - : Frontiers Research Foundation - ISSN 1664-462X
    Roč. 12, JUN 11 (2021)
    Number of pages21 s.
    Languageeng - English
    CountryCH - Switzerland
    Keywords2d-dige ; Brassica napus ; microspore ; osmotic stress ; RT-qPCR ; screening
    OECD categoryBiochemical research methods
    R&D ProjectsEF16_019/0000738 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Method of publishingOpen access
    Institutional supportUEB-Q - RVO:61389030
    UT WOS000666356200001
    EID SCOPUS85108969741
    DOI10.3389/fpls.2021.628167
    AnnotationThe present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
    WorkplaceInstitute of Experimental Botany
    ContactDavid Klier, knihovna@ueb.cas.cz, Tel.: 220 390 469
    Year of Publishing2022
    Electronic addresshttp://doi.org/10.3389/fpls.2021.628167
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.