- Numerical minimization of energy functionals in continuum mechanics u…
Number of the records: 1  

Numerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB

  1. 1.
    SYSNO ASEP0579519
    Document TypeC - Proceedings Paper (int. conf.)
    R&D Document TypeConference Paper
    TitleNumerical minimization of energy functionals in continuum mechanics using hp-FEM in MATLAB
    Author(s) Moskovka, Alexej (UTIA-B)
    Frost, Miroslav (UT-L) RID, ORCID
    Valdman, Jan (UTIA-B) RID, ORCID
    Number of authors3
    Source TitleComputational mechanics 2023. Proceedings of computational mechanics 2023. - Plzeň : University of West Bohemia, 2023 / Adámek V. ; Jonášová A. ; Plánička S. - ISBN 978-80-261-1177-1
    Pagess. 130-132
    Number of pages3 s.
    Publication formOnline - E
    ActionComputational mechanics 2023 /38./
    Event date23.10.2023 - 25.10.2023
    VEvent locationSrní
    CountryCZ - Czech Republic
    Event typeEUR
    Languageeng - English
    CountryCZ - Czech Republic
    Keywordshp-FEM ; energy functionals ; numerical minimization
    Subject RIVBC - Control Systems Theory
    OECD categoryApplied mathematics
    Subject RIV - cooperationInstitute of Information Theory and Automation - General Mathematics
    R&D ProjectsGA22-20181S GA ČR - Czech Science Foundation (CSF)
    GF21-06569K GA ČR - Czech Science Foundation (CSF)
    Institutional supportUT-L - RVO:61388998 ; UTIA-B - RVO:67985556
    AnnotationMany processes in mechanics and thermodynamics can be formulated as a minimization of a particular energy functional. The finite element method can be used for an approximation of such functionals in a finite-dimensional subspace. Consequently, the numerical minimization methods (such as quasi-Newton and trust region) can be used to find a minimum of the functional. Vectorization techniques used for the evaluation of the energy together with the assembly of discrete energy gradient and Hessian sparsity are crucial for evaluation times. A particular model simulating the deformation of a Neo-Hookean solid body is solved in this contribution by minimizing the corresponding energy functional. We implement both P1 and rectangular hp-finite elements and compare their efficiency with respect to degrees of freedom and evaluation times.
    WorkplaceInstitute of Thermomechanics
    ContactMarie Kajprová, kajprova@it.cas.cz, Tel.: 266 053 154 ; Jana Lahovská, jaja@it.cas.cz, Tel.: 266 053 823
    Year of Publishing2024
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.