Number of the records: 1  

Shape memory behaviour of PMMA-coated NiTi alloy under thermal cycle

  1. 1.
    0561755 - FZÚ 2023 RIV CH eng J - Journal Article
    Samal, Sneha Manjaree - Kosjaková, O. - Vokoun, David - Stachiv, Ivo
    Shape memory behaviour of PMMA-coated NiTi alloy under thermal cycle.
    Polymers. Roč. 14, č. 14 (2022), č. článku 2932. E-ISSN 2073-4360
    R&D Projects: GA ČR(CZ) GC21-12994J; GA ČR(CZ) GC22-14387J; GA MŠMT(CZ) EF16_019/0000760
    Grant - others:OP VVV - SOLID21(XE) CZ.02.1.01/0.0/0.0/16_019/0000760
    Institutional support: RVO:68378271
    Keywords : curvature * radius * shape recovery * NiTi * PMMA * thermal cycles
    OECD category: Materials engineering
    Impact factor: 5, year: 2022
    Method of publishing: Open access

    Both poly(methyl methacrylate) (PMMA) and NiTi possess shape memory and biocompatibility behavior. The macroscale properties of PMMA–NiTi composites depend immensely on the quality of the interaction between two components. NiTi shape memory alloy (SMA) and superelastic (SE) sheets were spin coated on one side with PMMA. The composite was prepared by the spin coating method with an alloy-to-polymer-thickness ratio of 1:3. The bending stiffness and radius of curvature were calculated by using numerical and experimental methods during thermal cycles. The experimental radius curvatures in actuation have good agreement with the model. The change in shape results from the difference in coefficients of thermal expansion between PMMA and NiTi. Actuation temperatures were between 0 and 100 °C for the SMA–PMMA composite with a change in curvature from 10 to 120 mm with fixed Young’s modulus of PMMA at 3 GPa, and a change in Young’s modulus of NiTi from 30 to 70 GPa. PMMA–NiTi composites are useful as actuators and sensor elements.
    Permanent Link: https://hdl.handle.net/11104/0334274

     
    FileDownloadSizeCommentaryVersionAccess
    0561755.pdf042.4 MBCC LicencePublisher’s postprintopen-access
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.