Number of the records: 1  

Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate.

  1. 1.
    SYSNO ASEP0550044
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitlePlasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate.
    Author(s) Guselnikova, O. (CZ)
    Váňa, J. (CZ)
    Phuong, L.T. (CZ)
    Panov, Illia (UCHP-M) RID, ORCID, SAI
    Rulíšek, Lubomír (UOCHB-X) RID, ORCID
    Trelin, A. (CZ)
    Postnikov, P. (CZ)
    Švorčík, V. (CZ)
    Andris, Erik (UOCHB-X) ORCID
    Lyutakov, O. (CZ)
    Source TitleChemical Science . - : Royal Society of Chemistry - ISSN 2041-6520
    Roč. 12, č. 15 (2021), s. 5591-5598
    Number of pages8 s.
    Languageeng - English
    CountryGB - United Kingdom
    Keywordsactivation energy ; cycloaddition ; efficiency
    Subject RIVCF - Physical ; Theoretical Chemistry
    OECD categoryPhysical chemistry
    R&D ProjectsLTAUSA19148 GA MŠMT - Ministry of Education, Youth and Sports (MEYS)
    Method of publishingOpen access
    Institutional supportUCHP-M - RVO:67985858 ; UOCHB-X - RVO:61388963
    UT WOS000655250200021
    EID SCOPUS85104858257
    DOI10.1039/d0sc05898j
    AnnotationPlasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to35 degrees C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at35 degrees C.
    WorkplaceInstitute of Chemical Process Fundamentals
    ContactEva Jirsová, jirsova@icpf.cas.cz, Tel.: 220 390 227
    Year of Publishing2022
    Electronic addresshttps://pubs.rsc.org/en/content/articlepdf/2021/sc/d0sc05898j
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.