Number of the records: 1  

TUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis

  1. 1.
    SYSNO ASEP0505195
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleTUBG1 missense variants underlying cortical malformations disrupt neuronal locomotion and microtubule dynamics but not neurogenesis
    Author(s) Ivanova, E.L. (FR)
    Gilet, J.G. (FR)
    Sulimenko, Vadym (UMG-J) RID, ORCID
    Duchon, A. (FR)
    Rudolf, G. (FR)
    Runge, K. (FR)
    Collins s, S.C. (FR)
    Asselin, L. (FR)
    Broix, L. (FR)
    Drouot, N. (FR)
    Tiiiy, P. (FR)
    Nusbaum, P. (FR)
    Vincent, A. (FR)
    Magnant, W. (FR)
    Skory, V. (FR)
    Birling, M.C. (FR)
    Pavlovic, G. (FR)
    Godin, J.D. (FR)
    Yalcin, B. (FR)
    Herault, Y. (FR)
    Dráber, Pavel (UMG-J) RID, ORCID
    Chelly, J. (FR)
    Hinckelmann, M.V. (FR)
    Number of authors23
    Article number2129
    Source TitleNature Communications. - : Nature Publishing Group
    Roč. 10, č. 1 (2019)
    Number of pages18 s.
    Publication formOnline - E
    Languageeng - English
    CountryGB - United Kingdom
    Keywordsdeveloping mouse-brain ; tubulin small complex ; spindle pole body ; gamma-tubulin ; centrosomal protein ; animal-models ; mutations ; mice ; migration ; gene
    Subject RIVEB - Genetics ; Molecular Biology
    OECD categoryCell biology
    R&D ProjectsGA16-23702S GA ČR - Czech Science Foundation (CSF)
    GA18-27197S GA ČR - Czech Science Foundation (CSF)
    Method of publishingOpen access
    Institutional supportUMG-J - RVO:68378050
    UT WOS000467702800002
    DOI10.1038/s41467-019-10081-8
    AnnotationDe novo heterozygous missense variants in the gamma-tubulin gene TUBG1 have been linked to human malformations of cortical development associated with intellectual disability and epilepsy. Here, we investigated through in-utero electroporation and in-vivo studies, how four of these variants affect cortical development. We show that TUBG1 mutants affect neuronal positioning, disrupting the locomotion of new-born neurons but without affecting progenitors' proliferation. We further demonstrate that pathogenic TUBG1 variants are linked to reduced microtubule dynamics but without major structural nor functional centrosome defects in subject-derived fibroblasts. Additionally, we developed a knock-in Tubg1(Y)(92)(C/+) mouse model and assessed consequences of the mutation. Although centrosomal positioning in bipolar neurons is correct, they fail to initiate locomotion. Furthermore, Tubg1(Y)(92)(C/+) animals show neuroanatomical and behavioral defects and increased epileptic cortical activity. We show that Tubg1(Y)(92)(C/+) mice partially mimic the human phenotype and therefore represent a relevant model for further investigations of the physiopathology of cortical malformations.
    WorkplaceInstitute of Molecular Genetics
    ContactNikol Škňouřilová, nikol.sknourilova@img.cas.cz, Tel.: 241 063 217
    Year of Publishing2020
    Electronic addresshttps://www.nature.com/articles/s41467-019-10081-8
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.