Number of the records: 1  

Decoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability

  1. 1.
    SYSNO ASEP0583573
    Document TypeJ - Journal Article
    R&D Document TypeJournal Article
    Subsidiary JČlánek ve WOS
    TitleDecoding the Role of the Global Proteome Dynamics for Cellular Thermal Stability
    Author(s) Caviglia, B. (FR)
    Di Bari, D. (IT)
    Timr, Štěpán (UFCH-W)
    Guiral, M. (FR)
    Giudici-Orticoni, M.-T. (FR)
    Petrillo, C. (IT)
    Peters, J. (FR)
    Sterpone, F. (FR)
    Paciaroni, A. (IT)
    Source TitleJournal of Physical Chemistry Letters. - : American Chemical Society - ISSN 1948-7185
    Roč. 15, č. 5 (2024), s. 1435-1441
    Number of pages7 s.
    Languageeng - English
    CountryUS - United States
    Keywordsneutron-scattering ; proteins ; temperature ; adaptation ; diffusion ; viscosity ; extinctions ; evolution ; powder ; limits
    Subject RIVCF - Physical ; Theoretical Chemistry
    OECD categoryPhysical chemistry
    Method of publishingLimited access
    Institutional supportUFCH-W - RVO:61388955
    UT WOS001158986700001
    EID SCOPUS85184665864
    DOI10.1021/acs.jpclett.3c03351
    AnnotationMolecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.
    WorkplaceJ. Heyrovsky Institute of Physical Chemistry
    ContactMichaela Knapová, michaela.knapova@jh-inst.cas.cz, Tel.: 266 053 196
    Year of Publishing2025
    Electronic addresshttps://hdl.handle.net/11104/0351578
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.