Number of the records: 1  

Targeted chemical pressure yields tuneable millimetre-wave dielectric

  1. 1.
    0539813 - FZÚ 2021 RIV GB eng J - Journal Article
    Dawley, N.M. - Marksz, E.J. - Hagerstrom, A.M. - Olsen, G.H. - Holtz, M.E. - Goian, Veronica - Kadlec, Christelle - Zhang, J. - Lu, X. - Drisko, J.A. - Uecker, R. - Ganschow, S. - Long, Ch.J. - Booth, J.C. - Kamba, Stanislav - Fennie, C.J. - Muller, D.A. - Orloff, N.D. - Schlom, D. G.
    Targeted chemical pressure yields tuneable millimetre-wave dielectric.
    Nature Materials. Roč. 19, Feb (2020), s. 176-181. ISSN 1476-1122. E-ISSN 1476-4660
    R&D Projects: GA MŠMT(CZ) EF16_019/0000760; GA ČR GA18-09265S
    Grant - others:OP VVV - SOLID21(XE) CZ.02.1.01/0.0/0.0/16_019/0000760
    Institutional support: RVO:68378271
    Keywords : microwave dielectrics * tunability * thin film * strain
    OECD category: Condensed matter physics (including formerly solid state physics, supercond.)
    Impact factor: 43.841, year: 2020
    Method of publishing: Limited access
    https://doi.org/10.1038/s41563-019-0564-4

    We employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into todayś best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n=6 (SrTiO3)nSrO results in unprecedented low loss at frequencies up to 125 GHz. The resulting atomically engineered superlattice material, (SrTiO3)n-m(BaTiO3)mSrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies.
    Permanent Link: http://hdl.handle.net/11104/0317515

     
     
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.